终身会员
搜索
    上传资料 赚现金

    2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】第1页
    2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】第2页
    2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】

    展开

    这是一份2024年河南省许昌长葛市九上数学开学检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是( ).
    A.6B.7C.8D.9
    2、(4分)如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是( )
    A.6B.8C.D.9
    3、(4分)四边形的内角和为( )
    A.180°B.360°C.540°D.720°
    4、(4分)王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A”.则数轴上点A所表示的数是( )
    A.-1B.-+1C.D.-
    5、(4分)甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是( )
    A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同
    6、(4分)如图,已知正方形 ABCD 的边长为 1,以顶点 A、B 为圆心,1 为半径的两弧交于点 E, 以顶点 C、D 为圆心,1 为半径的两弧交于点 F,则 EF 的长为 ( )
    A.B.C.D.
    7、(4分)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系是( )
    A.B.
    C.D.
    8、(4分)如图,中,,是上一点,且,是上任一点,于点,于点,下列结论:①是等腰三角形;②;③;④,其中正确的结论是( )
    A.①②B.①③④C.①④D.①②③④
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
    10、(4分)当m=_____时,是一次函数.
    11、(4分)已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.
    12、(4分)分解因式:a2-4=________.
    13、(4分)用换元法解方程时,如果设,那么得到关于的整式方程为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,点.
    (1)直接写出直线的解析式;
    (2)如图1,过点的直线交轴于点,若,求的值;
    (3)如图2,点从出发以每秒1个单位的速度沿方向运动,同时点从出发以每秒0.6个单位的速度沿方向运动,运动时间为秒(),过点作交轴于点,连接,是否存在满足条件的,使四边形为菱形,判断并说明理由.
    15、(8分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:
    (1)病人的最高体温是达多少?
    (2)什么时间体温升得最快?
    (3)如果你是护士,你想对病人说____________________.
    16、(8分)如图,已知正方形ABCD的边长为3,菱形EFGH的三个顶点E、G、H分别在正方形的边AB、CD、DA上,AH=1,联结CF.
    (1)当DG=1时,求证:菱形EFGH为正方形;
    (2)设DG=x,△FCG的面积为y,写出y关于x的函数解析式,并指出x的取值范围;
    (3)当DG=时,求∠GHE的度数.
    17、(10分)已知一个一次函数的图象与一个反比例函数的图象交于点.
    分别求出这两个函数的表达式;
    在同一个平面直角坐标系中画出这两个函数的图象,根据图象回答:当取何值时,一次函数的值大于反比例函数的值?
    求平面直角坐标中原点与点构成的三角形的面积.
    18、(10分)已知,直线与双曲线交于点,点.
    (1)求反比例函数的表达式;
    (2)根据图象直接写出不等式的解集 .
    (3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若平行四边形ABCD的周长为20,则△CDE的周长为_____.
    20、(4分)观察下列式子:
    当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
    n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
    n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
    根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.
    21、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.
    22、(4分)有一组数据:3,,4,6,7,它们的平均数是5,那么这组数据的方差是______.
    23、(4分)一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是 ________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知,在四边形ABCD中,点E、点F分别为AD、BC的中点,连接EF.
    (1)如图1,AB∥CD,连接AF并延长交DC的延长线于点G,则AB、CD、EF之间的数量关系为 ;
    (2)如图2,∠B=90°,∠C=150°,求AB、CD、EF之间的数量关系?
    (3)如图3,∠ABC=∠BCD=45°,连接AC、BD交于点O,连接OE,若AB=,CD=2,BC=6,则OE= .
    25、(10分)已知:在中,对角线、交于点,过点的直线交于点,交于点.
    求证:,.
    26、(12分)如图,在平行四边形ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD,EC.
    (1)求证:四边形BECD是平行四边形;
    (2)当∠A=50°,∠BOD=100°时,判断四边形BECD的形状,并说明理由.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.
    【详解】
    设某人从甲地到乙地经过的路程是x千米,根据题意,
    得:8+1.2(x−3)⩽14,
    解得:x⩽8,
    即x的最大值为8km,
    故选C.
    此题考查一元一次不等式的应用,解题关键在于列出方程
    2、B
    【解析】
    根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.
    【详解】
    解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,
    ∴CD=AD=BD=10,
    ∵S△CAD=30,CE⊥AB,垂足为E,
    ∴S△CAD=AD•CE=30
    ∴CE=6,
    ∴DE=
    故选B.
    本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.
    3、B
    【解析】
    解:四边形的内角和=(4-2)•180°=360°
    故选B.
    4、A
    【解析】
    先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A之间的距离,进而可求出点A表示的数.
    【详解】
    数轴上正方形的对角线长为:,由图中可知-1和A之间的距离为.
    ∴点A表示的数是-1.
    故选A.
    本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.
    5、D
    【解析】
    解:A、根据平均数的定义,正确;
    B、根据方差的定义,正确;
    C、根据方差的定义,正确,
    D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.
    故选D
    6、D
    【解析】
    连接AE,BE,DF,CF,可证明三角形AEB是等边三角形,利用等边三角形的性质和勾股定理即可求出边AB上的高线,同理可求出CD边上的高线,进而求出EF的长.
    【详解】
    解:连接AE,BE,DF,CF.
    ∵以顶点A、B为圆心,1为半径的两弧交于点E,AB=1,
    ∴AB=AE=BE,
    ∴△AEB是等边三角形,
    ∴边AB上的高线为EN=

    延长EF交AB于N,并反向延长EF交DC于M,则E、F、M,N共线,
    则EM=1-EN=1-,
    ∴NF=EM=1-,
    ∴EF=1-EM-NF=-1.
    故选:D.
    本题考查正方形的性质和等边三角形的判定和性质以及勾股定理的运用,解题的关键是添加辅助线构造等边三角形,利用等边三角形的性质解答即可.
    7、B
    【解析】
    由题意,爷爷在公园回家,则当时,;从公园回家一共用了45分钟,则当时,;
    【详解】
    解:由题意,爷爷在公园回家,则当时,;
    从公园回家一共用了分钟,则当时,;
    结合选项可知答案B.
    故选:B.
    本题考查函数图象;能够从题中获取信息,分析运动时间与距离之间的关系是解题的关键.
    8、B
    【解析】
    根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ADB=∠C+∠DBC,然后求出∠C=∠DBC,再根据等角对等边可得DC=DB,从而判断①正确;没有条件说明∠C的度数,判断出②错误;连接PD,利用△BCD的面积列式求解即可得到PE+PF=AB,判断出③正确;过点B作BG∥AC交FP的延长线于G,根据两直线平行,内错角相等可得∠C=∠PBG,∠G=∠CFP=90°,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AF=BG,根据然后利用“角角边”证明△BPE和△BPG全等,根据全等三角形对应边相等可得BG=BE,再利用勾股定理列式求解即可判断④正确.
    【详解】
    在△BCD中,∠ADB=∠C+∠DBC,
    ∵∠ADB=2∠C,
    ∴∠C=∠DBC,
    ∴DC=DB,
    ∴△DBC是等腰三角形,故①正确;
    无法说明∠C=30°,故②错误;
    连接PD,则S△BCD=BD•PE+DC•PF=DC•AB,
    ∴PE+PF=AB,故③正确;
    过点B作BG∥AC交FP的延长线于G,
    则∠C=∠PBG,∠G=∠CFP=90°,
    ∴∠PBG=∠DBC,四边形ABGF是矩形,
    ∴AF=BG,
    在△BPE和△BPG中,

    ∴△BPE≌△BPG(AAS),
    ∴BG=BE,
    ∴AF=BE,
    在Rt△PBE中,PE2+BE2=BP2,
    即PE2+AF2=BP2,故④正确.
    综上所述,正确的结论有①③④.
    故选:B.
    本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,勾股定理的应用,作辅助线构造出矩形和全等三角形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、70°
    【解析】
    由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.
    【详解】
    解:由题意知:∠ACA′=20°;
    若AC⊥A'B',则∠A′+∠ACA′=90°,
    得:∠A′=90°-20°=70°;
    由旋转的性质知:∠BAC=∠A′=70°;
    故∠BAC的度数是70°.
    故答案是:70°
    本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
    10、3或0
    【解析】
    根据一次函数的定义即可求解.
    【详解】
    依题意得m-3≠0,2m+1=1或m-3=0,
    解得m=0或m=3,
    故填:3或0.
    此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
    11、1
    【解析】
    方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.
    【详解】
    由题意知,设原数据的平均数为 ,新数据的每一个数都加了1,则平均数变为+1,
    则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
    现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
    =[(x1-)1+(x1-)1+…+(x5-)1]=1,
    所以方差不变.
    故答案为1.
    本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
    12、 (a+2)(a-2);
    【解析】
    有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.
    【详解】
    解:a2-4=(a+2)(a-2).
    故答案为:(a+2)(a-2).
    考点:因式分解-运用公式法.
    13、
    【解析】
    将分式方程中的换,则=,代入后去分母即可得到结果.
    【详解】
    解:根据题意得:,
    去分母得:.
    故答案为:.
    此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)或;(3)存在,
    【解析】
    (1)利用待定系数法可求直线AB解析式;
    (2)分两种情况讨论,利用全等三角形的性质可求解;
    (3)先求点D坐标,由勾股定理可得DN=AM=t,可证四边形AMDN是平行四边形,即当AM=AN时,四边形AMDN为菱形,列式可求t的值.
    【详解】
    (1)设直线AB解析式为:y=mx+n,
    根据题意可得:,
    ∴,
    ∴直线AB解析式为;
    (2)若点C在直线AB右侧,
    如图1,过点A作AD⊥AB,交BC的延长线于点D,过点D作DE⊥AC于E,
    ∵∠ABC=45°,AD⊥AB,
    ∴∠ADB=∠ABC=45°,
    ∴AD=AB,
    ∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°,
    ∴∠ABO=∠DAC,AB=AD,∠AOB=∠AED=90,
    ∴△ABO≌△DAE(AAS),
    ∴AO=DE=3,BO=AE=4,
    ∴OE=1,
    ∴点D(1,-3),
    ∵直线y=kx+b过点D(1,-3),B(0,4).
    ∴,
    ∴k=-7,
    若点C在点A右侧时,如图2,
    同理可得,
    综上所述:k=-7或.
    (3)设直线DN的解析式为:y=x+n,且过点N(-0.6t,0),
    ∴0=-0.8t+n,
    ∴n=0.8t,
    ∴点D坐标(0,0.8t),且过点N(-0.6t,0),
    ∴OD=0.8t,ON=0.6t,
    ∴DN==1,
    ∴DN=AM=1,且DN∥AM,
    ∴四边形AMDN为平行四边形,
    当AN=AM时,四边形AMDN为菱形,
    ∵AN=AM,
    ∴t=3-0.6t,
    ∴t=,
    ∴当t=时,四边形AMDN为菱形.
    本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,菱形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.
    15、(1)1.1℃;(2)14-18;(3)注意身体的健康
    【解析】
    根据折线图可得,(1)这天病人的最高体温即折线图的最高点是1.1°C;
    (2)14-18时,折线图上升得最快,故这段时间体温升得最快;
    (3)根据折线图分析即可得出答案,答案不唯一,如注意身体的健康,符合折线图即可.
    【详解】
    (1)由图可知:病人的最高体温是达1.1℃;
    (2)由图可知:体温升得最快的时间段为:14-18;
    (3)注意身体的健康(只要符合图形即可,答案不唯一)
    本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长的速度.
    16、(2)详见解析;(2)(3)60°
    【解析】
    (2)先求出HG,再判断出△AHE≌△DGH,得出∠AHE=∠DGH,进而判断出∠GHE=90∘,即可得出结论;
    (2)先判断出∠HEA=∠FGM,进而判断出△AHE≌△MFG.得出FM=HA=2,即可得出结论;
    (3)利用勾股定理依次求出GH= ,AE= ,GE= ,进而判断出GH=HE=GE,即可得出结论
    【详解】
    解:(2)在正方形ABCD中,
    ∵AH=2,
    ∴DH=2.
    又∵DG=2,
    ∴HG=
    在△AHE和△DGH中,
    ∵∠A=∠D=90°,AH=DG=2,EH=HG=,
    ∴△AHE≌△DGH,
    ∴∠AHE=∠DGH.
    ∵∠DGH+∠DHG=90°,∠AHE+∠DHG=90°.
    ∴∠GHE=90°
    所以菱形EFGH是正方形;
    (2)如图2,过点F作FM⊥DC交DC所在直线于M,联结GE.
    ∵AB∥CD,
    ∴∠AEG=∠MGE.
    ∵HE∥GF,
    ∴∠HEG=∠FGE.
    ∴∠HEA=∠FGM,
    在△AHE和△MFG中,
    ∵∠A=∠M=90°,EH=GF.
    ∴△AHE≌△MFG.
    ∴FM=HA=2.
    即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,
    ∴y= GC•FM=(3﹣x)×2=﹣x+(0≤x≤);
    (3)如图2,当DG=时,
    在Rt△HDG中,DH=2,根据勾股定理得,GH=;
    ∴HE=GH= ,
    在Rt△AEH中,根据勾股定理得,AE=,
    过点G作GN⊥AB于N,
    ∴EN=AE﹣DG=
    在Rt△ENG中,根据勾股定理得,GE=
    ∴GH=HE=GE,
    ∴△GHE为等边三角形.
    ∴∠GHE=60°.
    此题考查正方形的判定,全等三角形的性质与判断,勾股定理,解题关键在于作辅助线
    17、(1),;(2)图见详解,或;(3).
    【解析】
    (1)设反比例的函数解析式为,一次函数的解析式为,将点P代入可得k值,将点Q代入可得m值,将点P、Q代入求解即可;
    (2)描点、连线即可画出函数的图象,当一次函数的图象在反比例函数图象的上方时,一次函数的值大于反比例函数的值,由此可确定x的取值;
    (3)连接PO,QO,设直线与y轴交于点M,由求解.
    【详解】
    解:(1)设反比例的函数解析式为,一次函数的解析式为,
    将点代入得,解得,
    将点代入得,
    将点,代入
    得:,
    解得

    所以一次函数的表达式为,反比例函数的表达式为;
    (2)函数和的图象如图所示,
    由图象可得,当或时,一次函数的值大于反比例函数的值;
    (3)如图,连接PO,QO,设直线与y轴交于点M,
    直线与y轴的交点坐标M(0,-1),即,点P到y轴的距离为2,点Q到y轴的距离为1,

    所以平面直角坐标中原点与点构成的三角形的面积为.
    本题考查了一次函数与反比例函数的综合,涉及了待定系数法求函数解析式、画函数图象、根据函数图象及函数值的大小确定自变量的取值范围、围成的三角形的面积,熟练掌握待定系数法及运用数形结合的数学思想是解题的关键.
    18、(1);(2)或;(3),
    【解析】
    (1)将点A代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解;
    (2)首先联立两个函数,解得即可得出点B坐标,直接观察图像,即可得出解集;
    (3)首先过点作轴,过点作轴,交于点,根据平行线的性质,得出,得出,进而得出直线CD解析式.
    【详解】
    解:(1)根据题意,可得点
    将其代入反比例函数解析式,即得
    (2)根据题意,得
    解得
    ∴点B(4,-2)
    ∴直接观察图像,可得的解集为

    (3)过点作轴,过点作轴,交于点
    根据题意,可得
    ∴∠EAB=∠NOB=∠OCD,∠AEB=∠COD=90°,AB=CD
    ∴∠ABE=∠CDO
    ∴(ASA)

    则可得出直线CD为
    此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、3.
    【解析】
    试题分析:由平行四边形ABCD的对角线相交于点O,OE⊥BD,根据线段垂直平分线的性质,可得BE=DE,又由平行四边形ABCD的周长为30,可得BC+CD的长,继而可得△CDE的周长等于BC+CD.
    试题解析:∵四边形ABCD是平行四边形,
    ∴OB=OD,AB=CD,AD=BC,
    ∵平行四边形ABCD的周长为30,
    ∴BC+CD=3,
    ∵OE⊥BD,
    ∴BE=DE,
    ∴△CDE的周长为:CD+CE+DE=CD+CE+BE=CD+BC=3.
    考点:3.平行四边形的性质;3.线段垂直平分线的性质.
    20、2n,n2﹣1,n2+1.
    【解析】
    由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.
    【详解】
    解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5
    n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10
    n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…
    ∴勾股数a=2n,b=n2﹣1,c=n2+1.
    故答案为2n,n2﹣1,n2+1.
    考点:勾股数.
    21、±
    【解析】
    找到函数y=kx+3与坐标轴的交点坐标,利用三角形面积公式表示出面积,解方程即可.
    【详解】
    解:∵直线 y=kx+3 与两坐标轴的交点为(0,3)(,0)
    ∴与两坐标轴围成三角形的面积=·3·||=3
    解得:k=
    故答案为
    本题考查了一次函数与坐标轴的交点问题,属于简单题,明确函数与x轴的交点有两个是解题关键.
    22、2
    【解析】
    试题分析:已知3,a,4,6,1.它们的平均数是5,根据平均数的公式可得a=5×5﹣3﹣4﹣6﹣1=5,所以这组数据的方差是s2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(1﹣5)2]=2.
    考点:平均数;方差.
    23、m<1
    【解析】
    解:∵y随x增大而减小,
    ∴k<0,
    ∴2m-6<0,
    ∴m<1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
    【解析】
    (1)根据三角形的中位线和全等三角形的判定和性质解答即可;
    (2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.首先证明△AFB≌△KFC,推出AB=CK,再利用勾股定理,三角形的中位线定理即可解决问题;
    (3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.想办法求出点E、O的坐标即可解决问题;
    【详解】
    解:(1)结论:AB+CD=2EF,
    理由:如图1中,
    ∵点E、点F分别为AD、BC的中点,
    ∴BF=FC,AE=ED,
    ∵AB∥CD,
    ∴∠ABF=∠GCF,
    ∵∠BFA=∠CFG,
    ∴△ABF≌△GCF(ASA),
    ∴AB=CG,AF=FG,
    ∵AE=ED,AF=FG,
    ∴2EF=DG=DC+CG=DC+AB;
    ∴AB+CD=2EF;
    (2)如图2中,作CK⊥BC,连接AF,延长AF交CK于K.连接DK,作DH⊥CK于H.
    ∵∠ABF=∠KCF,BF=FC,∠AFB=∠CFK,
    ∴△AFB≌△KFC,
    ∴AB=CK,AF=FK,
    ∵∠BCD=150°,∠BCK=90°,
    ∴∠DCK=120°,
    ∴∠DCH=60°,
    ∴CH=CD,DH=CD,
    在Rt△DKH中,DK2=DH2+KH2=(CD)2+(AB+CD)2=AB2+CD2+AB•CD,
    ∵AE=ED,AF=FK,
    ∴EF=DK,
    ∴4EF2=DK2,
    ∴4EF2=AB2+CD2+AB•CD.
    (3)如图3中,以点B为原点,BC为x轴,建立平面直角坐标系如图所示.
    由题意:A(1,1),B(0,0),D(4,2),
    ∵AE=ED,
    ∴E(,),
    ∵AC的解析式为y=-x+,BD的解析式为y=x,
    由,解得,
    ∴O(,),
    ∴OE==.
    故答案为(1)AB+CD=2EF;(2)4EF2=AB2+CD2+AB•CD,证明详见解析;(3).
    本题考查四边形综合题、全等三角形的判定和性质、三角形的中位线定理、解直角三角形、平面直角坐标系、一次函数的应用等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会建立平面直角坐标系解决问题,属于中考压轴题.
    25、证明见解析.
    【解析】
    首先根据平行四边形的性质可得AB∥CD,OA=OC.根据平行线的性质可得∠EAO=∠FCO,进而可根据ASA定理证明△AEO≌△CFO,再根据全等三角形的性质可得OE=OF,AE=CF.
    【详解】
    证明:∵ 四边形ABCD为平行四边形,且对角线AC和BD交于点O,
    ∴,,
    ∴∠EAO=∠FCO,
    ∵∠AOE=∠COF,
    ∴ △AOE△COF(ASA),
    ∴ OE=OF,AE=CF.
    本题考查了平行四边形的性质和全等三角形的判定,掌握全等三角形判定的方法是本题解题的关键.
    26、 (1)证明见解析;(2)四边形BECD是矩形.
    【解析】
    (1)由AAS证明△BOE≌△COD,得出OE=OD,即可得出结论;
    (2)结论:四边形BECD是矩形.由平行四边形的性质得出∠BCD=∠A=50°,由三角形的外角性质求出∠ODC=∠BCD,得出OC=OD,证出DE=BC,即可得出结论.
    【详解】
    (1)证明:∵四边形ABCD为平行四边形,
    ∴AB∥DC,AB=CD,
    ∴∠OEB=∠ODC,
    又∵O为BC的中点,
    ∴BO=CO,
    在△BOE和△COD中,

    ∴△BOE≌△COD(AAS);
    ∴OE=OD,
    ∴四边形BECD是平行四边形;
    (2)解:若∠A=50°,∠BOD=100°时,四边形BECD是矩形.
    理由如下:∵四边形ABCD是平行四边形,
    ∴∠BCD=∠A=50°,
    ∵∠BOD=∠BCD+∠ODC,
    ∴∠ODC=100°﹣50°=50°=∠BCD,
    ∴OC=OD,
    ∵BO=CO,OD=OE,
    ∴DE=BC,
    ∵四边形BECD是平行四边形,
    ∴四边形BECD是矩形;
    此题主要考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质是解决问题的关键.
    题号





    总分
    得分

    相关试卷

    2024年河南省益阳市赫山区九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年河南省益阳市赫山区九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南省许昌长葛市2023-2024学年九上数学期末复习检测试题含答案:

    这是一份河南省许昌长葛市2023-2024学年九上数学期末复习检测试题含答案,共8页。试卷主要包含了以下事件属于随机事件的是,下列各式与是同类二次根式的是,中,,,,则的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map