2024年河南省郑州市第十七中学九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为
A.14B.13C.12D.10
2、(4分)一次函数y=kx+b中,y 随x的增大而增大,b > 0,则这个函数的图像不经过 ( )
A.第一象限B.第二象限C.第三象限D.第四象限
3、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,
方差分别是,,,.在本次射击测试中,成绩最
稳定的是( )
A.甲B.乙C.丙D.丁
4、(4分)有一个直角三角形的两边长分别为3和4,则第三边的长为( )
A.5B.C.D.5或
5、(4分) “垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )
A.B.C.D.
6、(4分)分式方程有增根,则的值为
A.0和3B.1C.1和D.3
7、(4分)分式有意义,则 x 的取值范围是( )
A.x 1B.x 0C.x 1D.x 1
8、(4分)已知,则的值等于( )
A.6B.-6C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某正比例函数图象经过点(1,2),则该函数图象的解析式为___________
10、(4分)如图,已知点A的坐标为(5,0),直线y=x+b(b≥0)与y轴交于点B,连接AB,∠α=75°,则b的值为_____.
11、(4分)有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.
12、(4分)已知直线与直线平行且经过点,则__.
13、(4分)如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)一个三角形三边的长分别为a,b,c,设p=(a+b+c),根据海伦公式S=可以求出这个三角形的面积.若a=4,b=5,c=6,
求:(1)三角形的面积S;
(2)长为c的边上的高h.
15、(8分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.
16、(8分)4月12日华为新出的型号为“P30 Pr”的手机在上海召开发布会,某华为手机专卖网店抓住商机,购进10000台“P30 Pr”手机进行销售,每台的成本是4400元,在线同时向国内、国外发售.第一个星期,国内销售每台售价是5400元,共获利100万元,国外销售也售出相同数量该款手机,但每台成本增加400元,获得的利润却是国内的6倍.
(1)求该店销售该款华为手机第一个星期在国外的售价是多少元?
(2)受中美贸易战影响,第二个星期,国内销售每台该款手机售价在第一个星期的基础上降低m%,销量上涨5m%;国外销售每台售价在第一个星期的基础上上涨m%,并且在第二个星期将剩下的手机全部卖完,结果第二个星期国外的销售总额比国内的销售总额多6993万元,求m的值.
17、(10分)如图,在▱ABCD中,CE平分∠BCD,交AD于点E,DF平分∠ADC,交BC于点F,CE与DF交于点P,连接EF,BP.
(1)求证:四边形CDEF是菱形;
(2)若AB=2,BC=3,∠A=120°,求BP的值.
18、(10分)先化简,再求值:,其中的值从不等式组的整数解中选取.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)将直线y=﹣2x+3向下平移2个单位得到的直线为_____.
20、(4分)如图,直线y=-x-与x,y两轴分别交于A,B两点,与反比例函数y=的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为___.
21、(4分)平面直角坐标系中,点关于原点的对称点坐标为______.
22、(4分)因式分解:m2n+2mn2+n3=_____.
23、(4分)若点在正比例函数的图象上,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.
(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)
(2)求证:点D到BA,BC的距离相等.
25、(10分)如图,在等腰直角三角形ABC中,∠ACB=90°,BE⊥CE于E,AD⊥CE于D,AD=5cm,DE=3cm.
(1)求证△CBE≌△ACD
(2)求线段BE的长
26、(12分)市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分:“了解很多”、“了解较多”、“了解较少”、“不了解”),对本市某所中学的学生进行了抽样调查,我们将这次调查的结果绘制了以下两幅不完整统计图.
根据以上信息,解答下列题.
(1)补全条形统计图.
(2)本次抽样调查了多少名学生?在扇形统计图中,求“”所应的圆心角的度数.
(3)该中学共有2000名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较少”的有多少人.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
∵平行四边形ABCD,
∴AD∥BC,AD=BC,AO=CO,
∴∠EAO=∠FCO,
∵在△AEO和△CFO中,
,
∴△AEO≌△CFO,
∴AE=CF,EO=FO=1.5,
∵C四边形ABCD=18,∴CD+AD=9,
∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
故选C.
本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
2、D
【解析】
先根据一次函数的增减性判断出k的符号,再由一次函数的图象与系数的关系即可得出结论.
【详解】
解:∵一次函数y=kx+b中,y随x的增大而增大,
∴k0.
∵b0,
∴此函数的图象经过第一、二、三象限,不经过第四象限.
故选D.
点睛:本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k的正负.
3、C
【解析】
方差越小,成绩越稳定,据此判断即可.
【详解】
解:∵0.43<0.90<1.22<1.68,∴丙成绩最稳定,
故选C
本题考查了方差的相关知识,属于基础题型,掌握判断的方法是解题的关键.
4、D
【解析】
分4是直角边、4是斜边,根据勾股定理计算即可.
【详解】
当4是直角边时,斜边==5,
当4是斜边时,另一条直角边=,
故选:D.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
5、C
【解析】
根据中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,逐一判定即可.
【详解】
A选项,是轴对称图形,不符合题意;
B选项,是轴对称图形,不符合题意;
C选项,是中心对称图形,符合题意;
D选项,是轴对称图形,不符合题意;
故选:C.
此题主要考查对中心对称图形的理解,熟练掌握,即可解题.
6、D
【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.
【详解】
∵分式方程-1=有增根,
∴x﹣1=0,x+1=0,
∴x1=1,x1=﹣1.
两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=2;
当x=﹣1时,m=﹣1+1=0,
当m=0,方程无解,
∴m=2.
故选D.
7、C
【解析】
分析:根据分式有意义的条件可得x﹣1≠0,再解不等式即可.
详解:由题意得:x﹣1≠0,解得:x≠1.
故选C.
点睛:本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.
8、A
【解析】
由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.
【详解】
解:设正比例函数的解析式为y=kx,
把点(1,2)代入得,
2=k×1,
解得k=2,
∴该函数图象的解析式为:;
故答案为:.
本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.
10、
【解析】
设直线与x轴交于点C,由直线BC的解析式可得出 结合可得出,通过解含30度角的直角三角形即可得出b值.
【详解】
设直线与x轴交于点C,如图所示:
∵直线BC的解析式为y=x+b,
∴
∵
∴
当x=0时,y=x+b=b.
在Rt△ABO中, OB=b,OA=5,
∴AB=2b,
∴
∴
故答案为:
考查待定系数法求一次函数解析式, 三角形的外角性质, 含角的直角三角形的性质,勾股定理等,综合性比较强,根据直线解析式得到是解题的关键.
11、小林, 9环
【解析】
根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.
【详解】
根据折线统计图,可知小林是新手,
小林10次成绩的极差是10-1=9(环)
故答案为:小林,9环.
本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.
12、2
【解析】
由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.
【详解】
直线与直线平行,
,
,
把点代入得,解得;
,
故答案为:2
本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.
13、8
【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.
【详解】
∵点E,F分别是BD,DC的中点,
∴FE是△BCD的中位线,
∴EF=BC=3,
∵∠BAD=90°,AD=BC=6,AB=8,
∴BD=10,
又∵E是BD的中点,
∴Rt△ABD中,AE=BD=5,
∴AE+EF=5+3=8,
故答案为:8
本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)
【解析】
(1)先根据a、b、c的值求出p,再代入公式计算可得;
(2)由题意得出ch=,解之可得.
【详解】
解:(1)p=(4+5+6)=.
p-a=-4=,p-b=-5=,p-c=-6=.
S===;
(2)∵S=ch,
∴h==2×÷6=.
本题主要考查二次根式的应用,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
15、12.
【解析】
根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.
【详解】
∵ D、E是AB、BC的中点,DE=3
∴AC=2DE=6
∵∠A=90°,∠B=30°
∴BC=2AC=12.
此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.
16、(1)1800元;(2)m=1.
【解析】
(1)根据(国外的售价-成本)×销售的数量=国内的6倍,列方程解出即可;
(2)根据第二个星期国外的销售总额-国内的销售总额=6993万元,利用换元法解方程可解答.
【详解】
解:(1)设该店销售该款华为手机第一个星期在国外的售价是x元,
根据题意得: •[x-(4400+400)]=6×10,x=1800,
答:该店销售该款华为手机第一个星期在国外的售价是1800元;
(2)第一个星期国内销售手机的数量为: =100(台),
由题意得:1800(1+m%)×[1000-2000-100(1+5m%)]-5400(1-m%)×100(1+5m%)=69930000,
1800(1+m%)(7000-5000m%)-5400×100(1-m%)(1+5m%)=69930000,
180(1+m%)(7-5m%)-540(1-m%)(1+5m%)=6993,
设m%=a,则原方程化为:180(1+a)(7-5a)-540(1-a)(1+5a)=6993,
360(1+a)(7-5a)-180(1-a)(1+5a)=2331,
a2=0.01,
a=0.1或-0.1(舍),
∴m=1.
本题主要考查了手机销售的应用问题,涉及到一元二次方程、一元一次方程应用等知识,弄清题意,找出数量关系是解决问题的关键.
17、 (1)证明见解析;(2)BP的值为.
【解析】
(1)利用平行四边形的性质和角平分线的定义可求,可证得结论CD=CF=DE;
(2)过P作于PG⊥BC于G,在Rt△BPG中可求得PG和CG的长,则可求得BG的长,在Rt△BPG中,由勾股定理可求得BP的长.
【详解】
(1)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠EDF=∠DFC,
∵DF平分∠ADC,
∴∠EDF=∠CDF,
∴∠DFC=∠CDF,
∴CD=CF,
同理可得CD=DE,
∴CF=DE,且CF∥DE,
∴四边形CDEF为菱形;
(2)解:如图,过P作PG⊥BC于G,
∵AB=2,BC=3,∠A=120°,且四边形CDEF为菱形,
∴CF=EF=CD=AB=2,∠ECF=∠BCD=∠A=60°,
∴△CEF为等边三角形,
∴CE=CF=2,
∴PC=CE=1,
∴CG=PC=,PG=PC=,
∴BG=BC﹣CG=3﹣=,
在Rt△BPG中,由勾股定理可得BP==,
即BP的值为.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和菱形的性质是解题的关键.
18、-2.
【解析】
试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
试题解析:原式=
==
解得-1≤x<,
∴不等式组的整数解为-1,0,1,2
若分式有意义,只能取x=2,
∴原式=-=-2
【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=﹣2x+2
【解析】
根据一次函数图象与几何变换得到直线y=-2x+3向下平移2个单位得到的函数解析式为y=-2x+3-2.
【详解】
解:直线y=﹣2x+3向下平移2个单位得到的函数解析式为y=﹣2x+3﹣2=﹣2x+2.
故答案为:y=﹣2x+2
本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.
20、
【解析】
作CH⊥x轴于H,如图,先利用一次函数解析式确定B(0,-),A(-3,0),再利用三角函数的定义计算出∠OAB=30°,则∠CAH=30°,设D(-3,t),则AC=AD=t,接着表示出CH=AC=t,AH=CH=t得到C(-3-t,t),然后利用反比例函数图象上点的坐标特征得到(-3-t)•t=3t,最后解方程即可.
【详解】
作CH⊥x轴于H,如图,
当x=0时,y=-x-=-,则B(0,-),
当y=0时,-x-=0,解得x=-3,则A(-3,0),
∵tan∠OAB=,
∴∠OAB=30°,
∴∠CAH=30°,
设D(-3,t),则AC=AD=t,
在Rt△ACH中,CH=AC=t,AH=CH=t,
∴C(-3-t,t),
∵C、D两点在反比例函数图象上,
∴(-3-t)•t=3t,解得t=2,
即D点的纵坐标为2.
故答案为2.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
21、
【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.
【详解】
∵关于原点的对称两个点坐标符号相反,
∴点关于原点的对称点坐标为,
故答案为:.
此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.
22、n(m+n)1
【解析】
先提公因式n,再利用完全平方公式分解因式即可.
【详解】
解:m1n+1mn1+n3
=n(m1+1mn+n1)
=n(m+n)1.
故答案为:n(m+n)1
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
23、
【解析】
将y=1代入正比例函数y=-2x求出m值,此题得解.
【详解】
将y=1代入正比例函数y=-2x中得:
1=-2m
解得:m=
故答案是:.
考查了一次函数图象上点的坐标特征,将y=1代入正比例函数y=-2x求出m值是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)如图所示,DF即为所求,见解析;(2)见解析.
【解析】
(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;
(2)根据角平分线的性质解答即可.
【详解】
(1)如图所示,DF即为所求:
(2)∵△ABC中,∠A=60°,∠C=40°,
∴∠ABC=80°,
∵DE垂直平分BC,
∴BD=DC,
∴∠DBC=∠C=40°,
∴∠ABD=∠DBC=40°,
即BD是∠ABC的平分线,
∵DF⊥AB,DE⊥BC,
∴DF=DE,
即点D到BA,BC的距离相等.
此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.
25、 (1)见解析;(2)2cm
【解析】
(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;
(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD-DE.
【详解】
(1)证明:∵AD⊥CE,∠ACB=90°,
∴∠ADC=∠ACB=90°,
∴∠BCE=∠CAD(同角的余角相等),
在△ADC与△CEB中
,
∴△ADC≌△CEB(AAS);
(2)解:由(1)知,△ADC≌△CEB,
则AD=CE=5cm,CD=BE.
∵CD=CE-DE,
∴BE=AD-DE=5-3=2(cm),
即BE的长度是2cm.
考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.
26、(1)见解析;(2);(3)人.
【解析】
(1)利用A组的人数除以其占比即可得到这次被调查的学生人数,再求出C组的人数,即可补全统计图;
(2)求出D组的占比,乘以360°即可求解;
(3)利用总人数乘以C组占比即可求解.
【详解】
(1)由图可知这次被调查的学生人数为(人)
则所对应的人数为(人)补全图形如下
(2)此次抽样调查了100名学生,则扇形统计图中“”所对应部分的圆心角为
(3)估计这所中学的所有学生中,对“节约教育”内容“了解较少”的学生有(名)
此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.
题号
一
二
三
四
五
总分
得分
批阅人
2024年河南省郑州市七十三中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年河南省郑州市七十三中学九上数学开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省郑州市金水区九上数学开学复习检测模拟试题【含答案】: 这是一份2024年河南省郑州市金水区九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省郑州市第十一中学数学九上开学考试模拟试题【含答案】: 这是一份2024年河南省郑州市第十一中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。