2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】
展开
这是一份2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解方程时,配方变形结果正确的是( )
A.B.C.D.
2、(4分)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是( )
A.AB=ADB.AC=BDC.∠ABC=90°D.∠ABC=∠ADC
3、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
A.B.C.D.
4、(4分)代数式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
5、(4分)某校九年级(1)班全体学生2018年初中毕业体育考试的成绩统计如表:
根据如表的信息判断,下列结论中错误的是()
A.该班一共有40名同学
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是44分
D.该班学生这次考试最高成绩是50分
6、(4分)下列数据中不能作为直角三角形的三边长的是( )
A.1,,2B.7,24,25C..D.1,,
7、(4分)不等式>﹣1的正整数解的个数是( )
A.1个B.2个C.3个D.4个
8、(4分)在等腰三角形中,,则的周长为( )
A.B.C.或D.或
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
10、(4分)如图,直线y1=x+1和直线y1=0.5x+1.5相交于点(1,3),则当x=_____时,y1=y1;当x______时,y1>y1.
11、(4分)在△ABC中,AB=8,BC=2 ,AC=6,D是AB的中点,则CD=_____.
12、(4分)如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=a,DE交AC于点E,下列结论:①AD2=AE.AB;②1.8≤AE<5;⑤当AD=时,△ABD≌△DCE;④△DCE为直角三角形,BD为4或6.1.其中正确的结论是_____.(把你认为正确结论序号都填上)
13、(4分)已知﹣=16,+=8,则﹣=________.
三、解答题(本大题共5个小题,共48分)
14、(12分)世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机,为了倡导“节约用水,从我做起”,某县政府决定对县直属机关300户家庭一年的月平均用水量进行调查,调查小组抽查了部分家庭月平均用水量(单位:吨),绘制条形图和扇形图如图所示.
(1)请将条形统计图补充完整;
(2)这些家庭月平均用水量数据的平均数是_______,众数是______,中位数是_______;
(3)根据样本数据,估计该县直属机关300户家庭的月平均用水量不超过12吨的约有多少户.
15、(8分)解方程:
16、(8分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.
17、(10分)计算
(1)﹣+;
(2)×﹣( +)(﹣).
18、(10分)已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.
求证:(1)△ABE≌△CDF;
(2)ED∥BF.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为_____.
20、(4分)如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_____.
21、(4分)如图,在正方形ABCD中,P为对角线BD上一点,过P作PE⊥BC于E,PF⊥CD于F,若PE=1,PF=3,则AP=________ .
22、(4分)若关于x的分式方程有增根,则m的值为_______.
23、(4分)《九章算术》是我国古代重要的数学著作之一,在“勾股”中记载了一道“折竹抵地”问题:“今有竹高一丈,未折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程求出AC的长为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,为边的中点,过点作,与的延长线相交于点,为延长上的任一点,联结、.
(1)求证:四边形是平行四边形;
(2)当为边的中点,且时,求证:四边形为矩形.
25、(10分)如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.
(1)求证:四边形EGFH是平行四边形;
(2)若EG=EH,AB=8,BC=1.求AE的长.
26、(12分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
(2)求本次调查获取的样本数据的平均数;
(3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.
【详解】
∵
∴x2+6x=1,
∴x2+6x+9=1+9,
∴(x+3)2=10;
故选:C.
本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
2、A
【解析】
根据菱形的定义和判定定理即可作出判断.
【详解】
A、根据菱形的定义可得,当AB=AD时平行四边形ABCD是菱形,故A选项符合题意;
B、根据对角线相等的平行四边形是矩形,可知AC=BD时,平行四边形ABCD是矩形,故B选项不符合题意;
C、有一个角是直角的平行四边形是矩形,可知当∠ABC=90° 时,平行四边形ABCD是矩形,故C选项不符合题意;
D、由平行四边形的性质可知∠ABC=∠ADC,∠ABC=∠ADC这是一个已知条件,因此不能判定平行四边形ABCD是菱形,故D选项不符合题意,
故选A.
本题考查了平行四边形的性质,菱形的判定、矩形的判定等,熟练掌握相关的判定方法是解题的关键.
3、D
【解析】
方程常数项移到右边,两边加上9变形即可得到结果.
【详解】
解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.
本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
4、C
【解析】
直接根据二次根式被开方数为非负数解题即可.
【详解】
由题意得:,∴.
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.
5、C
【解析】
根据总数,众数,中位数的定义即可一一判断;
【详解】
该班一共有:2+5+6+6+8+7+6=40(人),众数是45分,最高成绩为50分,中位数为45分,
故A、B、D正确,C错误,
故选:C.
此题考查总数,众数,中位数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.
6、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.
【详解】
解:A.,符合勾股定理的逆定理,故不符合题意;
B. 72+242=252,符合勾股定理的逆定理,故不符合题意;
C.,不符合勾股定理的逆定理,故符合题意;
D.,符合勾股定理的逆定理,故不符合题意.
故选:C.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、D
【解析】
,去分母得3(x+1)>2(2x+2)-6,去括号得3x+3>4x+4-6,移项,合并同类项得-x>-5,系数化为1得x
相关试卷
这是一份2024年黑龙江省大庆市林甸县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省大庆市大庆中学九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。