搜索
    上传资料 赚现金
    英语朗读宝

    2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】

    2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】第1页
    2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】第2页
    2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】

    展开

    这是一份2024年黑龙江省大兴安岭地区名校数学九上开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列多项式中能用完全平方公式分解的是( )
    A.x2-x+1B.a2+a+C.1- 2x+x2D.-a2+b2-2ab
    2、(4分)如图,点E是矩形ABCD的边DC上的点,将△AED沿着AE翻折,点D刚好落在对角线AC的中点D’处,则∠AED的度数为( )
    A.50°B.60°C.70°D.80°
    3、(4分)若,则下列不等式中一定成立的有( )
    A.B.
    C.D.
    4、(4分)点M(1,2)关于y轴对称点的坐标为( )
    A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)
    5、(4分)如图,在正方形ABCD中,E是AD的中点,F是CD上一点,且CF=3FD.则图中相似三角形的对数是( )
    A.1B. 2C.3D.)4
    6、(4分)若与最简二次根式是同类二次根式,则m的值为( )
    A.5B.6C.2D.4
    7、(4分)一次函数y=—2x+3的图象与两坐标轴的交点是( )
    A.(3,1)(1,);B.(1,3)(,1);C.(3,0)(0,) ;D.(0,3)(,0)
    8、(4分)已知△ABC中,AB=8,BC=15,AC=17,则下列结论无法判断的是( )
    A.△ABC是直角三角形,且AC为斜边
    B.△ABC是直角三角形,且∠ABC=90°
    C.△ABC的面积为60
    D.△ABC是直角三角形,且∠A=60°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)直线y=3x-2不经过第________________象限.
    10、(4分)如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B=__________.
    11、(4分)如图,在中,为边延长线上一点,且,连结、.若的面积为1,则的面积为____.
    12、(4分)已知:如图,△ABC中,∠ACB=90°,AB=5cm,AC=4cm,CD⊥AB于D,求CD的长及三角形的面积.
    13、(4分)如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___
    三、解答题(本大题共5个小题,共48分)
    14、(12分)心理学家研究发现,一般情况下,一节课分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为 理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数随时间(分钟)的变化规律如图所示(其中都为线段)
    (1)分别求出线段和的函数解析式;
    (2)开始上课后第分钟时与第分钟时相比较,何时学生的注意力更集中?
    (3)一道数学竞赛题,需要讲分钟,为了效果较好,要求学生的注意力指标数最低达到那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?
    15、(8分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.
    (1)这一天的最高温度是多少?是在几时到达的?
    (2)这一天的温差是多少?从最低温度到最高温度经过多长时间?
    (3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?
    16、(8分)如图,点 A,B,C,D 依次在同一条直线上,点 E,F 分别在直线 AD 的两侧,已知 BE//CF,∠A=∠D,AE=DF.
    (1)求证:四边形 BFCE 是平行四边形.
    (2)若 AD=10,EC=3,∠EBD=60°,当四边形 BFCE是菱形时,求 AB 的长.
    17、(10分)如图,在中,,于,平分,分别交,于,,于.连接,求证:四边形是菱形.
    18、(10分)先化简,再求值:(x+2+)÷,其中x=
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一次函数y=kx+2(k≠0)的图象与x轴交于点A(n,0),当n>0时,k的取值范围是_____.
    20、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.
    21、(4分)如图,正方形ABCD的面积等于25cm2,正方形DEFG的面积等于9cm2,则阴影部分的面积S=______cm2.
    22、(4分)如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=_____cm.
    23、(4分)如图,直线与x轴交点坐标为,不等式的解集是____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN
    (1)求证:AM⊥BN
    (2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;
    (3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当时,请求出 的值
    25、(10分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.
    26、(12分)先化简再求值:,其中.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据完全平方公式判断即可.( )
    【详解】
    根据题意可以用完全平方公式分解的只有C选项.
    即C 选项
    故选C.
    本题主要考查完全平方公式,是常考点,应当熟练掌握.
    2、B
    【解析】
    由折叠的性质可得AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE,可求∠ACD=30°,由直角三角形的性质可求∠AED的度数.
    【详解】
    解:∵将△AED沿着AE翻折,点D刚好落在对角线AC的中点D′处,
    ∴AD=AD'=AC,∠D=∠AD'E=90°,∠DAE=∠CAE
    ∴∠ACD=30°,
    ∴∠DAC=60°,且∠DAE=∠CAE
    ∴∠DAE=∠CAE=30°,且∠D=90°
    ∴∠AED=60°
    故选:B.
    本题考查了翻折变换,矩形的性质,熟练运用折叠的性质是本题的关键.
    3、C
    【解析】
    根据不等式的性质,两边同时除以5进行计算,判断出结论成立的是哪个即可.
    【详解】
    解:∵5x>-5y,
    ∴x>-y,
    ∴x+y>0
    故选:C.
    此题主要考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
    4、A
    【解析】
    关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
    【详解】
    点M(1,2)关于y轴对称点的坐标为(-1,2)
    本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
    5、C
    【解析】

    在 中,
    在 中,
    在 中,
    在 中,
    根据相似三角形的判定,,故选C.
    6、C
    【解析】
    直接化简二次根式,进而利用同类二次根式的定义分析得出答案.
    【详解】
    ∵,与最简二次根式是同类二次根式,
    ∴m+1=3,
    解得:m=1.
    故选:C.
    考查了同类二次根式,正确把握同类二次根式的定义是解题关键.
    7、D
    【解析】
    y=—2x+3与横轴的交点为(,0),与纵轴的交点为(0,3),故选D
    8、D
    【解析】
    试题解析:∵AB=8,BC=15,CA=17,
    ∴AB2=64,BC2=225,CA2=289,
    ∴AB2+BC2=CA2,
    ∴△ABC是直角三角形,因为∠B的对边为17最大,所以AC为斜边,∠ABC=90°,
    ∴△ABC的面积是×8×15=60,
    故错误的选项是D.
    故选D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、二
    【解析】
    根据已知求得k,b的符号,再判断直线y=3x-2经过的象限.
    【详解】
    解:∵k=3>0,图象过一三象限,b=-2<0过第四象限
    ∴这条直线一定不经过第二象限.
    故答案为:二
    此题考查一次函数的性质,一次函数y=kx+b的图象有四种情况:
    ①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
    ②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
    ③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
    ④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
    10、77°
    【解析】
    先根据旋转的性质得∠B=∠AB′C′,AC=AC′,∠CAC′=90°,则可判断△ACC′为等腰直角三角形,所以∠ACC′=∠AC′C=45°,然后根据三角形外角性质计算出∠AB′C′,从而得到∠B的度数.
    【详解】
    ∵△ABC绕点A顺时针旋转90°后得到的△AB′C′,
    ∴∠B=∠AB′C′,AC=AC′,∠CAC′=90°,
    ∴△ACC′为等腰直角三角形,
    ∴∠ACC′=∠AC′C=45°,
    ∴∠AB′C′=∠B′CC′+∠CC′B′=45°+32°=77°,
    ∴∠B=77°.
    故答案为77°.
    此题考查旋转的性质,解题关键在于利用三角形外角性质.
    11、3
    【解析】
    首先根据平行四边形的性质,可得AD=BC,又由,可得BE=3BC=3AD,和的高相等,即可得出的面积.
    【详解】
    解:∵,
    ∴AD=BC,AD∥BC,
    ∴和的高相等,
    设其高为,
    又∵,
    ∴BE=3BC=3AD,
    又∵,

    故答案为3.
    此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.
    12、S△ABC=6cm2,CD=cm.
    【解析】
    利用勾股定理求得BC=3cm,根据直角三角形的面积等于两直角边乘积的一半即可求得△ABC的面积,再利用直角三角形的面积等于斜边乘以斜边上高的一半可得AB•CD=6,由此即可求得CD的长.
    【详解】
    ∵∠ACB=90°,AB=5cm,AC=4cm,
    ∴BC==3cm,
    则S△ABC=×AC×BC=×4×3=6(cm2).
    根据三角形的面积公式得:AB•CD=6,
    即×5×CD=6,
    ∴CD=cm.
    本题考查了勾股定理、直角三角形面积的两种表示法,根据勾股定理求得BC=3cm是解决问题的关键.
    13、
    【解析】
    过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF= ,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.
    【详解】
    解:过点G作GM⊥AD于M,如图,
    ∵FE⊥BE,
    ∴∠AEB+∠DEF=90°,
    而∠AEB+∠ABE=90°,
    ∴∠ABE=∠DEF,
    而∠A=∠EDF=90°,
    ∴△ABE∽△DEF,
    ∴AB:DE=AE:DF,即2:1=1:DF,
    ∴DF=,
    ∵四边形ABCD为正方形,
    ∴∠ADB=45°,
    ∴△DGM为等腰直角三角形,
    ∴DM=MG,
    设DM=x,则MG=x,EM=1-x,
    ∵MG∥DF,
    ∴△EMG∽△EDF,
    ∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,
    ∴S△DEG=×1×=,
    故答案为.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.
    三、解答题(本大题共5个小题,共48分)
    14、(1)线段AB的解析式为:y1=2x+1;线段CD的解析式为:;(2)第30分钟注意力更集中;(3)能.
    【解析】
    (1)分别从图象中找到其经过的点,利用待定系数法求得线段和的解析式即可;
    (2)根据上题求出的AB和CD的函数表达式,再分别求第5分钟和第30分钟的注意力指数,最后比较判断;
    (3)分别求出注意力指数为38时的两个时间,再将两时间之差和17比较,大于17则能讲完,否则不能.
    【详解】
    解:(1)设线段AB所在的直线的解析式为y1=k1x+1,
    把B(10,40)代入得,k1=2,
    ∴线段AB的解析式为:y1=2x+1.
    设线段CD所在直线的解析式为
    把C(25,40),D(40,25)代入得:,解得
    ∴线段CD的解析式为:
    (2)当x1=5时,y1=2×5+1=30,
    当x2=30时,y2=35
    ∴y1<y2
    ∴第30分钟注意力更集中;
    (3)令y1=38,
    ∴38=2x+1,
    ∴x1=9
    令y2=38,

    27-9=18>17
    ∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.
    主要考查了一次函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.
    15、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    【解析】
    (1)观察图象,可知最高温度为37℃,时间为15时;
    (2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;
    (3)观察图象可求解.
    【详解】
    解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;
    (2)∵最高温是15时37℃,最低温是3时23℃,
    ∴温差为: ,
    则经过的时间为:: (时);
    (3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.
    本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.
    16、(1)证明见解析;(2)AB=.
    【解析】
    (1)根据AAS证明△ABE≌△DCF,由全等三角形对应边相等得到BE=CF,根据一组对边平行且相等的四边形是平行四边形即可得到结论;
    (2)利用全等三角形的性质证明AB=CD即可得出结论.
    【详解】
    (1)∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD.
    ∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.
    (2)∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=1.
    ∵AD=10,AB=DC,∴AB(10﹣1).
    本题考查了菱形的性质,全等三角形的判定和性质,平行四边形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    17、详见解析
    【解析】
    求出CE=EH,AC=AH,证△CAF≌△HAF,推出∠ACD=∠AHF,求出∠B=∠ACD=∠FHA,推出HF∥CE,推出CF∥EH,得出平行四边形CFHE,根据菱形判定推出即可.
    【详解】
    ∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
    ∴CE=EH,
    在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,
    ∴Rt△ACE≌ Rt△AHE(HL),
    ∴AC=AH,
    ∵AE平分∠CAB,
    ∴∠CAF=∠HAF,
    在△CAF和△HAF中,

    ∴△CAF≌△HAF(SAS),
    ∴∠ACD=∠AHF,
    ∵CD⊥AB,∠ACB=90°,
    ∴∠CDA=∠ACB=90°,
    ∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
    ∴∠ACD=∠B=∠AHF,
    ∴FH∥CE,
    ∵CD⊥AB,EH⊥AB,
    ∴CF∥EH,
    ∴四边形CFHE是平行四边形,
    ∵CE=EH,
    ∴四边形CFHE是菱形.
    本题考查了平行四边形的性质和判定,菱形的判定,三角形的内角和定理,全等三角形的性质和判定,角平分线性质等知识点的应用,熟练掌握相关知识是解题的关键.
    18、,1-
    【解析】
    首先计算括号里面的加减,然后再计算除法,化简后再代入x的值即可.
    【详解】
    解:原式=×,
    =•
    =.
    当x=-3时,原式===1-.
    此题主要考查了分式的化简求值,关键是掌握分式加减和除法的计算法则.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、k<1
    【解析】
    分析:根据题意可以用含k的式子表示n,从而可以得出k的取值范围.
    详解:∵一次函数y=kx+2(k≠1)的图象与x轴交于点A(n,1),
    ∴n=﹣,
    ∴当n>1时,﹣>1,
    解得,k<1,
    故答案为k<1.
    点睛:本题考查一次函数图象与系数的关系,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.
    20、1
    【解析】
    分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.
    详解:连接AC,
    ∵四边形ABCD是矩形,
    ∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
    ∴∠E=∠DAE,
    又∵BD=CE,
    ∴CE=CA,
    ∴∠E=∠CAE,
    ∵∠CAD=∠CAE+∠DAE,
    ∴∠E+∠E=30°,即∠E=1°,
    故答案为1.
    点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
    21、
    【解析】
    由题意可知:已知正方形ABCD面积等于25cm2,边长是5,正方形DEFG的面积等于9cm2,边长是3,阴影部分是正方形ABCD面积的一半,加上正方形DEFG的面积,减去底为5+3=8cm,高为3cm的三角形的面积,由此列式得出答案即可.
    【详解】
    解:∵正方形ABCD面积等于25cm2,正方形DEFG的面积等于9cm2,
    ∴正方形ABCD边长是5,正方形DEFG的边长是3,
    ∴阴影部分的面积S=25×+9-×(5+3)×3
    = + -
    =.
    故答案为:.
    本题考查正方形的性质,整式的混合运算,掌握组合图形面积之间的计算关系是解决问题的关键.
    22、1
    【解析】
    根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
    【详解】
    解:∵∠BCA=90°,D是AB的中点,
    ∴AB=2CD=12cm,
    ∵E、F分别是AC、BC的中点,
    ∴EF=AB=1cm,
    故答案为1.
    本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    23、
    【解析】
    根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.
    【详解】
    解:∵直线y=kx+b与x轴交点坐标为(1,0),
    ∴由图象可知,
    当x≤1时,y≥0,
    ∴不等式kx+b≥0的解集是x≤1.
    故答案是x≤1.
    本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3).
    【解析】
    (1)只需证明△ABM≌△BCN即可得到结论;
    (2)由(1)可知AM=BN且AM⊥BN,而ME是由AM绕点M顺时针旋转90度得到,于是可得ME与BN平行且相等,结论显然;
    (3)易证AMEF为正方形,从而问题转化为求两个正方形的边长之比,由于已经知道BM与BC之比,设BM=a,则由勾股定理易求AM.
    【详解】
    解:(1)∵ABCD是正方形,
    ∴AB=BC,∠ABC=∠C=90°,
    又∵BM=CN,
    ∴△ABM≌△BCN(SAS),
    ∴∠BAM=∠CBN,
    ∵∠BAM+∠BMA=90°,
    ∴∠CBN+∠BMA=90°,
    ∴AM⊥BN;
    (2)∵将线段AM绕M顺时针旋转90°得到线段ME,
    ∴ME=AM,ME⊥AM,
    ∵△ABM≌△BCN,
    ∴AM=BN,
    ∵AM⊥BN,
    ∴BN=ME,且BN∥ME,
    ∴四边形BMEN是平行四边形;
    (3)∵将线段AM绕M顺时针旋转90°得到线段ME,将△ABM绕A逆时针旋转90°得到△ADF,
    ∴∠MAF=∠AME=90°,AF=ME=AM
    ∴AF∥ME,
    ∴AMEF是正方形,
    ∵,可以设BM=a,AB=na,
    在直角三角形ABM中,AM=,
    ∴.
    本题为四边形综合题,主要考查了正方形的判定与基本性质、全等三角形的判定与性质、平行四边形的判定与性质、旋转变换的性质、勾股定理等重要知识点,难度不大.本题虽然简单,但其所包含的基本模型却是很多题的原型,熟练掌握有助于解决相关的较难题目.
    25、见解析.
    【解析】
    利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∵DE=AD,F是BC边的中点,
    ∴FC=BC=AD=DE,
    又∵DE∥FC,
    ∴四边形CEDF是平行四边形.
    本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.
    26、3.
    【解析】
    原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将的值代入化简后的式子中计算,即可求出值.
    【详解】
    解:原式,
    ,
    当时,原式.
    此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年黑龙江省哈尔滨市数学九上开学检测试题【含答案】:

    这是一份2024年黑龙江省哈尔滨市数学九上开学检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】:

    这是一份2024年黑龙江省哈尔滨市名校数学九上开学达标检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘肃省金昌市名校九上数学开学达标检测模拟试题【含答案】:

    这是一份2024年甘肃省金昌市名校九上数学开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map