2024年黑龙江省哈尔滨市尚志市九年级数学第一学期开学综合测试模拟试题【含答案】
展开
这是一份2024年黑龙江省哈尔滨市尚志市九年级数学第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题中,正确的是( )
A.平行四边形的对角线相等 B.矩形的对角线互相垂直
C.菱形的对角线互相垂直且平分 D.菱形的对角线相等
2、(4分)已知关于的一元二次方程没有实数根,则实数的取值范围是( )
A.B.C.D.
3、(4分)如图,在平行四边形中,下列结论不一定成立的是( )
A.B.
C.D.
4、(4分)如图的中有一正方形,其中在上,在上,直线分别交于两点. 若,则的长度为()
A.B.C.D.
5、(4分)在直角坐标系中,点关于原点对称的点为,则点的坐标是( )
A.B.C.D.
6、(4分)有一组数据7、11、12、7、7、8、11,下列说法错误的是( )
A.中位数是7B.平均数是9C.众数是7D.极差为5
7、(4分)下列任务中,适宜采用普查方式的是( )
A.调查某地的空气质量B.了解中学生每天的睡眠时间
C.调查某电视剧在本地区的收视率D.了解某一天本校因病缺课的学生数
8、(4分)如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
A.①②B.②③C.①②④D.①②③④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知x=4是一元二次方程x2-3x+c=0的一个根,则另一个根为______.
10、(4分)方程的解是________.
11、(4分)一个正多边形的每个外角等于72°,则它的边数是__________.
12、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2……按如图所示放置,点A1、A2、A3……在直线y=x+1上,点C1、C2、C3……在x轴上,则A2019的坐标是___.
13、(4分)如图,直线与x轴交点坐标为,不等式的解集是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:
(1)化简求值:,其中x=1.
15、(8分)解下列方程:
16、(8分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.
(1)求A、B两点的坐标;
(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;
①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;
②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.
17、(10分)解方程与不等式组
(1)解方程:
(2)解不等式组
18、(10分)一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
(1)求一次函数的表达式;
(2)若点C在y轴上,且S△ABC=2S△AOB,直接写出点C的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
20、(4分)△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为______________.
21、(4分)若a=,b=,则=_______.
22、(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
23、(4分)______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.
(1)参加这次夏令营活动的初中生共有多少人?
(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?
25、(10分)解方程:
(1)x2-4x=3
(2)x2-4=2(x+2)
26、(12分)已知y﹣2与x成正比例,当x=2时,y=1.
(1)求y与x之间的函数解析式.
(2)在所给直角坐标系中画出函数图象.
(3)由函数图象直接写出当﹣2≤y≤2时,自变量x的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】分析:根据平行四边形、矩形、菱形的性质分别判断得出即可.
详解:A.根据平行四边形的性质,平行四边形的对角线互相平分不相等,故此选项错误;
B.根据矩形的性质,矩形的对角线相等,不互相垂直,故此选项错误;
C.根据菱形的性质,菱形的对角线互相垂直且平分,故此选项正确;
D.根据菱形的性质,菱形的对角线互相垂直且平分但不相等,故此选项错误.
故选C.
点睛:本题主要考查平行四边形、矩形、菱形的性质,熟练掌握相关定理是解题的关键.
2、A
【解析】
根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.
【详解】
根据题意得△=(-2)2-4m<0,
解得m>1.
故选A.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
3、D
【解析】
根据平行四边形的性质得到AD//BC、、从而进行判断.
【详解】
因为四边形是平行四边形,
所以AD//BC、、,(故B、C选项正确,不符合题意)
所以,(故A选项正确,不符合题意).
故选:D.
考查了平行四边形的性质,解题关键是熟记平行四边形的性质.
4、D
【解析】
由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.
【详解】
解:∵四边形DEFG是正方形,
∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
∴①,②,
由①可得,,解得:,
把代入②,得:,
解得:,
故选择:D.
本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.
5、B
【解析】
根据坐标系中关于原点对称的点的坐标特征:原坐标点为,关于原点对称:横纵坐标值都变为原值的相反数,即对称点为可得答案.
【详解】
解:关于原点对称的点的坐标特征:横纵坐标值都变为原值的相反数,所以点有关于原点O的对称点Q的坐标为(-2,-1).
故选:B
本题考查了对称与坐标.设原坐标点为,坐标系中关于对称的问题分为三类:1.关于轴对称:横坐标值不变仍旧为,纵坐标值变为,即对称点为;2.关于轴对称:纵坐标值不变仍旧为,横坐标值变为即对称点为;3.关于原点对称:横纵坐标值都变为原值的相反数,即对称点为.熟练掌握变化规律是解题关键.
6、A
【解析】
根据中位数.平均数.极差.众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:,
则中位数为8,平均数为,众数为7,极差为,
故选A.
本题考查了加权平均数,中位数,众数,极差,熟练掌握概念是解题的关键.
7、D
【解析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某地的空气质量,由于范围广,应当使用抽样调查,故本选项错误;
B. 了解中学生每天的睡眠时间,由于人数多,不易全面掌握所有的人,故应当采用抽样调查;
C. 调查某电视剧在本地区的收视率,人数较多,不便测量,应当采用抽样调查,故本选项错误;
D. 了解某一天本校因病缺课的学生数,人数少,耗时短,应当采用全面调查的方式,故本选项正确。
故选D.
此题考查全面调查与抽样调查,解题关键在于掌握调查方法.
8、D
【解析】
过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到
,,求得,得到,于是得到,故④正确.
【详解】
解:过O作于G,于H,
∵四边形是正方形,
,
,,
∵点O是对角线BD的中点,
,,
,,
,
,,
∴四边形是正方形,
,
,
,
在与中,
,
,
,故①正确;,
,
,故②正确;
,
∴四边形的面积正方形的面积,
∴四边形的面积保持不变;故③正确;
,
,,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
另一个根为t,根据根与系数的关系得到4+t=3,然后解一次方程即可.
【详解】
设另一个根为t,
根据题意得4+t=3,
解得t=-1,
即另一个根为-1.
故答案为-1.
此题考查根与系数的关系,解题关键在于掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=− .
10、
【解析】
推出方程x-3=0或x=0,求出方程的解即可.
【详解】
解:∵,
即x=0或x+3=0,
∴方程的解为.
本题主要考查对解一元二次方程,解一元一次方程,等式的性质等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.
11、1
【解析】
根据题意利用多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.
【详解】
解:360÷72=1.
故它的边数是1.
故答案为:1.
本题考查多边形内角与外角,根据正多边形的外角和求多边形的边数是解题的关键.
12、(22008-1,22008)
【解析】
先求出A1、A2、A3的坐标,找出规律,即可求解.
【详解】
∵直线y=x+1和y轴交于A1,
∴A1的交点为(0,1)
∵四边形A1B1C1O是正方形,
∴OC1=OA1=1,
把x=1代入直线得y=2,
∴A2(1,2)
同理A3(3,4)
…
∴An的坐标为(2n-1-1,2n-1)
故A2019的坐标为(22008-1,22008)
此题主要考查一次函数的图像,解题的关键是根据题意找到规律进行求解.
13、
【解析】
根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.
【详解】
解:∵直线y=kx+b与x轴交点坐标为(1,0),
∴由图象可知,
当x≤1时,y≥0,
∴不等式kx+b≥0的解集是x≤1.
故答案是x≤1.
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
三、解答题(本大题共5个小题,共48分)
14、(1)3;(1), .
【解析】
(1)根据实数的运算法则,先算乘方和开方,再算加减,注意0指数幂和负指数幂的运算;(1)根据分式的乘除法则先化简,再代入已知值计算.
【详解】
解:(1)原式=﹣1+4+﹣+1﹣1=3;
(1)原式=•
=
=﹣,
当x=1时,
原式=.
本题考核知识点:实数运算,分式化简求值.解题关键点:掌握实数运算法则和分式的运算法则,要注意符号问题.
15、x1=5,x2=1.
【解析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2-10x+25=2(x-5),
(x-5)2-2(x-5)=0,
(x-5)(x-5-2)=0,
x-5=0,x-5-2=0,
x1=5,x2=1.
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.
16、(1)A(4,0),B(0,8);(2)S =﹣4m+16,(0<m<4);(3),理由见解析
【解析】
试题分析:(1)根据坐标轴上点的特点直接求值,
(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;
②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.
试题解析:
(1)令x=0,则y=8,
∴B(0,8),
令y=0,则﹣2x+8=0,
∴x=4,
∴A(4,0),
(2)∵点P(m,n)为线段AB上的一个动点,
∴﹣2m+8=n,∵A(4,0),
∴OA=4,
∴0<m<4
∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);
(3)存在,理由如下:
∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,
∴四边形OEPF是矩形,
∴EF=OP,
当OP⊥AB时,此时EF最小,
∵A(4,0),B(0,8),
∴AB=4,
∵S△AOB=OA×OB=AB×OP,
∴OP= ,
∴EF最小=OP=.
【点睛】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.
17、(1);(2)
【解析】
(1)先把分母化为相同的式子,再进行去分母求解;
(2)依次解出各不等式的解集,再求出其公共解集.
【详解】
解:(1)原分式方程可化为,
方程两边同乘以得:
解这个整式方程得:
检验:当,
所以,是原方程的根
(2)解不等式①得:
解不等式②得:
不等式①、②的解集表示在同一数轴上:
所以原不等式组的解集为:
此题主要考查分式方程、不等式组的求解,解题的关键是熟知分式方程的解法及不等式的性质.
18、(1)y=x-2;(2)(0,2)或(0,-6)
【解析】
(1)根据一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),可以求得一次函数的表达式;
(2)根据题意,设出点C的坐标,然后根据S△ABC=2S△AOB,即可求得点C的坐标.
【详解】
解:(1)∵一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),
∴,得,
即一次函数的表达式是y=x-2;
(2)设点C的坐标为(0,c),
∵点A(3,1),点B(0,-2),
∴OB=2,
∵S△ABC=2S△AOB,
∴,
解得,c1=2,c2=-6,
∴C点坐标为 (0,2)或(0,-6).
本题考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、+1.
【解析】
分析:根据面积之比得出△BGC的面积等于正方形面积的,进而依据△BCG的面积以及勾股定理,得出BG+CG的长,进而得出其周长.
详解:∵阴影部分的面积与正方形ABCD的面积之比为2:1,
∴阴影部分的面积为×9=6,
∴空白部分的面积为9-6=1,
由CE=DF,BC=CD,∠BCE=∠CDF=90°,可得△BCE≌△CDF,
∴△BCG的面积与四边形DEGF的面积相等,均为×1=,
设BG=a,CG=b,则ab=,
又∵a2+b2=12,
∴a2+2ab+b2=9+6=15,
即(a+b)2=15,
∴a+b=,即BG+CG=,
∴△BCG的周长=+1,
故答案为+1.
点睛:此题考查了全等三角形的判定与性质、正方形的性质以及三角形面积问题.解题时注意数形结合思想与方程思想的应用.
20、84或24
【解析】
分两种情况考虑:
①当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD+DC=9+5=14,
则S△ABC=BC⋅AD=84;
②当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,
∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BD==9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC==5,
∴BC=BD−DC=9−5=4,
则S△ABC=BC⋅AD=24.
综上,△ABC的面积为24或84.
故答案为24或84.
点睛:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
21、
【解析】
先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.
【详解】
解:∵=(a+b)(a-b),
∴=2×(-2)=.
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
22、1
【解析】
将代入原式=(x-3-2)2=(x-1)2计算可得.
【详解】
当时,
原式
,
故答案为1.
本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.
23、1
【解析】
利用平方差公式即可计算.
【详解】
原式.
故答案为:1.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
二、解答题(本大题共3个小题,共30分)
24、(1)80人;(2)11.5元
【解析】
(1)参加这次夏令营活动的初中生所占比例是:1-10%-20%-30%=40%,就可以求出人数.
(2)小学生、高中生和大学生的人数为200×20%=40,200×30%=60,200×10%=20,根据平均数公式就可以求出答案.
【详解】
(1)参加这次夏令营活动的初中生共有200×(1﹣10%﹣20%﹣30%)=80人;
(2)小学生、高中生和大学生的人数分别为:
200×20%=40,200×30%=60,200×10%=20,
所以平均每人捐款为:(元).
本题考查了扇形统计图、加权平均数等知识.从扇形统计图中得出初中生所占比例是解题的关键.
25、(1)x1=, x2= (2)x1=-2,x2=4
【解析】
(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;
(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.
【详解】
(1)解:配方得,
x2-4x+4=3+4
(x-2)2=7
解之:x-2=±
∴x1=, x2=;
(2)解:(x+2)(x-2)-2(x+2)=0
(x+2)(x-2-2)=0
∴x+2=0或x-4=0
解之:x1=-2,x2=4.
本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
26、(1)y=2x+2;(2)如图见解析;(3)-2≤x≤2。
【解析】
(1)根据正比例的定义设y-2=kx(k≠2),然后把已知数据代入进行计算求出k值,即可得解;
(2)利用描点法法作出函数图象即可;
(3)根据图象可得结论.
【详解】
(解:(1)∵y-2与x成正比例,
∴设y-2=kx(k≠2),
∵当x=2时,y=1,
∴1-2=2k,
解得k=2,
∴y-2=2x,
函数关系式为:y=2x+2;
(2)当x=2时,y=2,
当y=2时,2x+2=2,解得x=-1,
所以,函数图象经过点(2,2),(-1,2),
同理,该函数图象还经过点(1,4),(-2,-2),(-3,-4).
函数图象如图:
.
(3)由图象得:当-2≤y≤2时,自变量x的取值范围是:-2≤x≤2.
本题考查了待定系数法求一次函数解析式,一次函数图象的作法,根据正比例的定义设出函数表达式是解题的关键.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年黑龙江省尚志市九上数学开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省哈尔滨市尚志市田家炳中学九年级数学第一学期开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。