年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】

    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】第1页
    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】第2页
    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024年黑龙江省鹤岗市绥滨五中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A2 2OB2 2.则点B2 2的坐标( )
    A.(22 2,-22 2)B.(22 016,-22 016)C.(22 2,22 2)D.(22 016,22 016)
    2、(4分)将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )
    A.40B.42C.38D.2
    3、(4分)如果a < b ,则下列式子错误的是( )
    A.a +7< b +7B.a ﹣5< b ﹣5
    C.﹣3 a <﹣3 bD.
    4、(4分)下列图形中,既是轴对称又是中心对称图形的是( )
    A.正方形B.等边三角形C.平行四边形D.正五边形
    5、(4分)由线段a,b,c组成的三角形不是直角三角形的是( )
    A.a=3,b=4,c=5B.a=12,b=13,c=5
    C.a=15,b=8,c=17D.a=13,b=14,c=15
    6、(4分)如图,直线经过第二、三、四象限,的解析式是,则的取值范围在数轴上表示为( ).
    A.B.
    C.D.
    7、(4分)如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b>0的解集是( )
    A.x>﹣1B.x<﹣1C.x>2D.x<2
    8、(4分)用配方法解下列方程,其中应在方程左右两边同时加上4的是( )
    A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如果将直线平移,使其经过点,那么平移后所得直线的表达式是__________.
    10、(4分)甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).
    11、(4分)直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.
    12、(4分)在菱形中,若,,则菱形的周长为________.
    13、(4分)当x≤2时,化简:=________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在RtΔABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连接OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连接DE.
    (1)如图一,当点O在RtΔABC内部时.
    ①按题意补全图形;
    ②猜想DE与BC的数量关系,并证明.
    (2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.

    15、(8分)如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB
    (1)求证:四边形EFCD是菱形;
    (2)设CD=2,求D、F两点间的距离.
    16、(8分)如图,已知直线y=kx+b交x轴于点A,交y轴于点B,直线y=2x﹣4交x轴于点D,与直线AB相交于点C(3,2).
    (1)根据图象,写出关于x的不等式2x﹣4>kx+b的解集;
    (2)若点A的坐标为(5,0),求直线AB的解析式;
    (3)在(2)的条件下,求四边形BODC的面积.
    17、(10分)如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.
    (1)求证:.
    (2)若,求的度数.
    18、(10分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.
    求证:(1)△BEG≌△DFH;
    (2)四边形GEHF是平行四边形.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:
    请估计:当n很大时,摸到白球的频率将会接近_____;(精确到0.1)
    20、(4分)计算:3﹣的结果是_____.
    21、(4分)已知反比例函数的图象与一次函数y=k(x﹣3)+2(k>0)的图象在第一象限交于点P,则点P的横坐标a的取值范围为___.
    22、(4分)如图,将菱形纸片ABCD折叠,使点C,D的对应点C',D'都落在直线AB上,折痕为EF,若EF=1.AC'=8,则阴影部分(四边形ED'BF)的面积为________ 。
    23、(4分)如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.
    求证:(1)四边形BFDE是平行四边形;
    (2)AE=CF.
    25、(10分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B品位价a元,可卖出(350-10a)件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?
    26、(12分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    ∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,A1B 1=OA1,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O,A2B2=A2O…,依此规律,
    ∴每4次循环一周,B1(2,﹣2),B2(﹣4,-4),B3(-8,8),B4(16,16),
    ∵22÷4=504…1,
    ∴点B22与B1同在第四象限,
    ∵﹣4=﹣22,8=23,16=24,
    ∴点B22(222,-222),
    故选A.
    【点睛】本题考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.
    2、B
    【解析】
    解:设这组数据的平均数为a,将这组数据中的每一个数减去40后所得新数据的平均数为a-40,所以a-40=2,解得a=42
    故选B.
    本题考查平均数的定义.
    3、C
    【解析】
    根据不等式的性质,逐项判断即可.
    【详解】
    解:∵a<b,∴a+7<b+7,故选项A不符合题意;
    ∵a<b,∴a-5<b-5,故选项B不符合题意;
    ∵a<b,∴-3a>-3b,故选项C符合题意;
    ∵a<b,∴,故选项D不符合题意.
    故选:C.
    此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
    4、A
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、正方形既是轴对称图形,也是中心对称图形,故选A正确;
    B、等边三角形是轴对称图形,不是中心对称图形,故选项B错误;
    C、平行四边形不是轴对称图形,是中心对称图形,故C错误;
    D、正五边形是轴对称图形,不是中心对称图形,故选项D错误.
    故选A.
    本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.
    5、D
    【解析】
    根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.
    【详解】
    A、32+42=52,符合勾股定理的逆定理,是直角三角形;
    B、52+122=132,符合勾股定理的逆定理,是直角三角形;
    C、152+82=172,符合勾股定理的逆定理,是直角三角形;
    D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.
    故选D.
    本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.
    6、C
    【解析】
    根据一次函数图象与系数的关系得到m-2<1且n<1,解得m<2,然后根据数轴表示不等式的方法进行判断.
    【详解】
    ∵直线y=(m-2)x+n经过第二、三、四象限,
    ∴m-2<1且n<1,
    ∴m<2且n<1.
    故选C.
    本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠1)是一条直线,当k>1,图象经过第一、三象限,y随x的增大而增大;当k<1,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(1,b).也考查了在数轴上表示不等式的解集.
    7、A
    【解析】
    根据一次函数y=kx+b的图象经过点(-1,0),且y随x的增大而增大,得出当x>-1时,y>0,即可得到关于x的不等式kx+b>0的解集是x>-1.
    【详解】
    由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>-1,
    则关于x的不等式kx+b>0的解集是x>﹣1,
    故选A.
    此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.
    8、B
    【解析】
    配方法的一般步骤:
    (1)把常数项移到等号的右边;
    (2)把二次项的系数化为1;
    (3)等式两边同时加上一次项系数一半的平方.
    【详解】
    A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
    B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;
    C、将该方程的二次项系数化为x 2 -2x= ,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;
    D、将该方程的二次项系数化为x 2 +x= ,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方;故本选项错误;
    故选B.
    本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据平移不改变k的值可设平移后直线的解析式为y=x+b,然后将点(0,2)代入即可得出直线的函数解析式.
    【详解】
    解:设平移后直线的解析式为y=x+b,把(0,2)代入直线解析式得解得 b=2,
    所以平移后直线的解析式为.
    本题考查了一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.
    10、①②③.
    【解析】
    根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.
    【详解】
    由图象得出甲步行720米,需要9分钟,
    所以甲的运动速度为:720÷9=80(m/分),
    当第15分钟时,乙运动15−9=6(分钟),
    运动距离为:15×80=1200(m),
    ∴乙的运动速度为:1200÷6=200(m/分),
    ∴200÷80=2.5,(故②正确);
    当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);
    此时乙运动19−9=10(分钟),
    运动总距离为:10×200=2000(m),
    ∴甲运动时间为:2000÷80=25(分钟),
    故a的值为25,(故④错误);
    ∵甲19分钟运动距离为:19×80=1520(m),
    ∴b=2000−1520=480,(故③正确).
    故正确的有:①②③.
    故答案为:①②③.
    此题考查一次函数的应用,解题关键在于结合函数图象进行解答.
    11、(0,-3).
    【解析】
    直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,
    即y=3x-3,
    当x=0时,y=-3,
    即与y轴交点坐标为(0,-3).
    12、8
    【解析】
    由菱形的,可得∠BAD=∠BCD =60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.
    【详解】
    解:如图,
    ∵ABCD为菱形
    ∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点
    又∵
    ∴∠BAD=∠BCD =60°
    ∴∠BAC=∠BAD=30°
    在Rt△AOB中,BO=AB,
    设BO=x,根据勾股定理可得:
    解得x=1
    ∴AB=2x=2
    ∴菱形周长为8
    故答案为8
    本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.
    13、2-x
    【解析】

    ∵x≤2,
    ∴原式=2-x.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)①补全图形,如图一,见解析;②猜想DE=BC. 证明见解析;(2) ∠AED=30°或15°.
    【解析】
    (1)①根据要求画出图形即可解决问题.
    ②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.
    (2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.
    【详解】
    (1)①补全图形,如图一,
    ②猜想DE=BC.
    如图,连接OD交BC于点F,连接AF
    在△BDF和△COF中,
    ∴△BDF≌ΔCOF
    ∴DF=OF,BF=CF
    ∴F分别为BC和DO的中点
    ∵∠BAC=90°,F为BC的中点,
    ∴AF=BC.
    ∵OA=AE,F为BC的中点,
    ∴AF=ED.
    ∴DE=BC
    (2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,
    ∵AB=AC,
    ∴AF垂直平分线段BC,
    ∴MB=MC,∵∠OCB=30°,∠OBC=15°,
    ∴∠MBC=∠MCB=30°,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,
    ∵∠BAM=∠BOM=45°,BM=BM,
    ∴△BMA≌△BMO(AAS),
    ∴AM=OM,∠BMO=∠BMA=120°,
    ∴∠AMO=120°,
    ∴∠MAO=∠MOA=30°,
    ∴∠AED=∠MAO=30°.
    如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.
    由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,
    ∴∠MAO=∠MBO=30°-15°=15°,
    ∵DE∥AM,
    ∴∠AED=∠MAO=15°,
    综上所述,满足条件的∠AED的值为15°或30°.
    本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    15、(1)见解析;(2)
    【解析】
    (1)由等边三角形的性质得出ED=CD=CE,证出△CEF是等边三角形,得出EF=CF=CE,得出ED=CD=EF=CF,即可得出结论;
    (2)连接DF,与CE相交于点G,根据菱形的性质求出DG,即可得出结果.
    【详解】
    (1)证明:∵△ABC与△CDE都是等边三角形,
    ∴ED=CD=CE,∠A=∠B=∠BCA=60°.
    ∴EF∥AB.
    ∴∠CEF=∠A=60°,∠CFE=∠B=60°,
    ∴∠CEF=∠CFE=∠ACB,
    ∴△CEF是等边三角形,
    ∴EF=CF=CE,
    ∴ED=CD=EF=CF,
    ∴四边形EFCD是菱形.
    (2)连接DF与CE交于点G
    ∵四边形EFCD是菱形
    ∴DF⊥CE, DF=2DG
    ∵CD=2,△EDC是等边三边形
    ∴CG=1,DG=
    ∴DF=2DG=,即D、F两点间的距离为
    本题考查了菱形的判定与性质、等边三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.
    16、(1)x>3(2)y=-x+5(3)9.5
    【解析】
    (1)根据C点坐标结合图象可直接得到答案;
    (2)利用待定系数法把点A(5,0),C(3,2)代入y=kx+b可得关于k、b得方程组,再解方程组即可;
    (3)由直线解析式求得点A、点B和点D的坐标,进而根据S四边形BODC=S△AOB-S△ACD进行求解即可得.
    【详解】
    (1)根据图象可得不等式2x-4>kx+b的解集为:x>3;
    (2)把点A(5,0),C(3,2)代入y=kx+b可得:
    ,解得:,
    所以解析式为:y=-x+5;
    (3)把x=0代入y=-x+5得:y=5,
    所以点B(0,5),
    把y=0代入y=-x+5得:x=2,
    所以点A(5,0),
    把y=0代入y=2x-4得:x=2,
    所以点D(2,0),
    所以DA=3,
    所以S四边形BODC=S△AOB-S△ACD==9.5.
    本题考查了待定系数法求一次函数解析式,直线与坐标轴的交点,一次函数与一元一次不等式的关系,不规则图形的面积等,熟练掌握待定系数法、注意数形结合思想的运用是解题的关键.
    17、(1)证明见解析;(2)
    【解析】
    (1)由角平分线的定义可得,由折叠图形的性质可得,DE垂直平分AC,可得,即可求证;
    (2)由(1)可得,在三角形ABC中,根据内角和等于180度即可求解.
    【详解】
    解:(1)平分,

    ∵将沿DE对折后,点C落在点A处,
    垂直平分,


    (2)由(1)可得,,


    本题考查折叠图形的性质、角平分线的定义、三角形内角和定理和垂直平分线的性质,解题的关键是灵活运用各种知识证明和求解,是个较简单的几何题.
    18、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;
    (2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AB=CD,AB∥DC,
    ∴∠ABE=∠CDF,
    ∵AG=CH,
    ∴BG=DH,
    在△BEG和△DFH中,

    ∴△BEG≌△DFH(SAS);
    (2)∵△BEG≌△DFH(SAS),
    ∴∠BEG=∠DFH,EG=FH,
    ∴∠GEF=∠HFB,
    ∴GE∥FH,
    ∴四边形GEHF是平行四边形.
    此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、0.60
    【解析】
    计算出平均值即可解答
    【详解】
    解:由表可知,当n很大时,摸到白球的频率将会接近0.60;
    故答案为:0.60;
    此题考查利用频率估计概率,解题关键在于求出平均值
    20、2.
    【解析】
    直接利用二次根式的加减运算法则计算得出答案.
    【详解】
    解:-=.
    故答案为:.
    此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.
    21、2<a<1.
    【解析】
    先确定一次函数图象必过点(1,2),根据k>0得出直线必过一、三象限,继而结合图象利用数形结合思想即可得出答案.
    【详解】
    当x=1时,y=k(1﹣1)+2=2,
    即一次函数过点(1,2),
    ∵k>0,
    ∴一次函数的图象必过一、三象限,
    把y=2代入y=,得x=2,
    观察图象可知一次函数的图象和反比例函数y=图象的交点的横坐标大于2且小于1,
    ∴2<a<1,
    故答案为:2<a<1.
    本题考查了反比例函数与一次函数的交点问题,熟练掌握相关知识并正确运用数形结合思想是解题的关键.
    22、
    【解析】
    根据对称图形的特点,算出BC和的长,则的长可求,然后过E作EH垂直AB,由勾股定理求出EH的长,将所求线段代入梯形面积公式即可求出阴影部分的面积.
    【详解】
    解:如图,过E作EH⊥,
    由对称图形的特征可知:


    故答案为:
    本题考查了菱形的性质,对称的性质及勾股定理,对称的两个图形对应边相等,灵活应用对称的性质求线段长是解题的关键.
    23、
    【解析】
    连接DF交AE于G,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD=∠DFC=90°,再根据面积法即可得出DG=,最后判定△ADG≌△DCF,即可得到CF=DG=.
    【详解】
    解:如图,连接DF交AE于G,
    由折叠可得,DE=EF,
    又∵E是CD的中点,
    ∴DE=CE=EF,
    ∴∠EDF=∠EFD,∠ECF=∠EFC,
    又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,
    ∴∠EFD+∠EFC=90°,即∠DFC=90°,
    由折叠可得AE⊥DF,
    ∴∠AGD=∠DFC=90°,
    又∵ED=3,AD=6,
    ∴Rt△ADE中,
    又∵
    ∴DG=
    ∵∠DAG+∠ADG=∠CDF+∠ADG=90°,
    ∴∠DAG=∠CDF,
    又∵AD=CD,∠AGD=∠DFC=90°,
    ∴△ADG≌△DCF(AAS),
    ∴CF=DG=,
    故答案为:.
    本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析.
    【解析】
    (1)由四边形ABCD是平行四边形,可得AD∥BC,又BE∥DF,可证四边形BFDE是平行四边形;
    (2)由四边形ABCD是平行四边形,可得AD=BC ,又ED=BF ,从而AD-ED=BC-BF,即AE=CF.
    【详解】
    (1)∵四边形ABCD是平行四边形,
    ∴AD∥BC,即DE∥BF .
    ∵BE∥DF,
    ∴四边形BFDE是平行四边形;
    (2)∵四边形ABCD是平行四边形,
    ∴AD=BC ,
    ∵四边形BFDE是平行四边形,
    ∴ED=BF ,
    ∴AD-ED=BC-BF,
    即AE=CF.
    本题主要考查了平行四边形的判定与性质,熟练掌握两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等是解答本题的关键.
    25、需要进货100件,每件商品应定价25元
    【解析】
    根据:每件盈利×销售件数=总盈利额;其中,每件盈利=每件售价-每件进价.建立等量关系.
    【详解】
    解:依题意(a-21)(350-10a)=400,
    整理得:a2-56a+775=0,
    解得a1=25,a2=1.
    ∵21×(1+20%)=25.2,
    ∴a2=1不合题意,舍去.
    ∴350-10a=350-10×25=100(件).
    答:需要进货100件,每件商品应定价25元.
    本题考查了一元二次方程的应用,注意需要检验结果是否符合题意.
    26、2.5
    【解析】
    一次函数的解析式为y=kx+b,图像经过(﹣4,15),(6,﹣5)两点,把这两点代入函数即可求出k、b的值,再把P(m,2)代入函数即可求出m值.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把(﹣4,15),(6,﹣5)代入得,
    解得:,
    所以一次函数解析式为y=﹣2x+7,
    把P(m,2)代入y=﹣2x+7,可得:﹣2m+7=2,
    解得:m=2.5.
    本题主要考查了待定系数法求一次函数解析式,牢牢掌握该法是解答本题的关键.
    题号





    总分
    得分
    批阅人
    摸球的次数n
    100
    200
    300
    500
    800
    1 000
    3 000
    摸到白球的次数m
    65
    124
    178
    302
    481
    620
    1845
    摸到白球的频率
    0.65
    0.62
    0.593
    0.604
    0.601
    0.620
    0.615

    相关试卷

    2024年河北省定州市杨家庄初级中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年河北省定州市杨家庄初级中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024年哈尔滨市风华中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年浙江省台州市椒江区书生中学数学九年级第一学期开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年浙江省台州市椒江区书生中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map