2024年黑龙江省龙江县数学九上开学预测试题【含答案】
展开
这是一份2024年黑龙江省龙江县数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,则与图中张家口的位置对应的“数对”为
A.(176,145°)B.(176,35°)C.(100,145°)D.(100,35°)
2、(4分)计算的结果是( )
A.0B.C.D.1
3、(4分)若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为( )
A.8B.6C.5D.4
4、(4分)若与|x﹣y﹣3|互为相反数,则x+y的值为( )
A.3B.9C.12D.27
5、(4分)已知一次函数,随的增大而减小,则的取值范围是( )
A.B.C.D.
6、(4分)计算()2的结果是( )
A.-2B.2C.±2D.4
7、(4分)如图,折叠长方形的一边,使点落在边的点处,折痕为,且,.则的长为( )
A.3B.C.4D.
8、(4分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需( )分钟到达终点B.
A.78B.76C.16D.12
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.
10、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
11、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
12、(4分)若分式的值为0,则的值是 _____.
13、(4分)分式的值为0,那么x的值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.
(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?
15、(8分)如图,在矩形中,是上一点,垂直平分,分别交、、于点、、,连接、.
(1)求证:;
(2)求证:四边形是菱形;
(3)若,为的中点,,求的长.
16、(8分)计算:( +)×
17、(10分)如图,DE是平行四边形ABCD中的∠ADC的平分线,EF∥AD,交DC于F.
(1)求证:四边形AEFD是菱形;
(2)如果∠A=60度,AD=5,求菱形AEFD的面积.
18、(10分)分解因式:
(1); (2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为_______.
20、(4分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
21、(4分)如图,在平行四边形中,度,,,则______.
22、(4分)若关于x的一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.
23、(4分)小邢到单位附近的加油站加油,下图所示是他所用的加油机上的数据显示牌,则数据中的变量是______
二、解答题(本大题共3个小题,共30分)
24、(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
25、(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.
(1)求E点坐标;
(2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.
26、(12分)在矩形ABCD中,对角线AC、BD交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°.
(1)求证:△AOB是等边三角形;
(2)求∠BOE的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据题意,画出坐标系,再根据题中信息进行解答即可得.
【详解】
建立坐标系如图所示,
∵“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,
∴张家口的位置对应的“数对”为(176,145°),
故选A.
本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.
2、B
【解析】
分析:首先进行通分,然后根据同分母的分式加减法计算法则即可求出答案.
详解:原式=,故选B.
点睛:本题主要考查的是分式的加减法计算,属于基础题型.学会通分是解决这个问题的关键.
3、B
【解析】
设边数为x,根据题意可列出方程进行求解.
【详解】
设边数为x,根据题意得(x-2)×180°=2×360°
解得x=6
故选B.
此题主要考查多边形的内角和,解题的关键是熟知多边形的外角和为360°.
4、D
【解析】
依题意得.
∴x+y=27.
故选D.
5、B
【解析】
根据一次函数的图像性质即可求解.
【详解】
依题意得k-2<0,解得
故选B.
此题主要考查一次函数的性质,解题的关键是熟知k的性质.
6、B
【解析】
根据即可求解.
【详解】
解:,
故选:B.
本题考查了二次根式的化简与求值,正确掌握二次根式的性质是解题关键.
7、B
【解析】
先求出BF的长度,进而求出FC的长度;根据勾股定理列出关于线段EF的方程,即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=10,DC=AB=6;∠B=90°,
由折叠的性质得:AF=AD=10cm;DE=EF
设DE=EF=x,EC=6-x
在Rt△ABF中
∴CF=10-8=2;
在Rt△EFC中,EF2=CE2+CF2,
解得:
故选:B
本题考查了翻折变换,矩形的性质,勾股定理,解题的关键是根据翻折变换的性质找出图形中隐含的等量关系;根据有关定理灵活分析、正确判断、准确求解.
8、A
【解析】
根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.
【详解】
解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,
甲的速度是千米/分钟,
由纵坐标看出AB两地的距离是16千米,
设乙的速度是x千米/分钟,由题意,得
,
解得x=千米/分钟,
相遇后乙到达A站还需 =2分钟,
相遇后甲到达B站还需分钟,
当乙到达终点A时,甲还需80-2=78分钟到达终点B,
故选:A.
本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;
【详解】
解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,
∴△=a2−6a+5≥0
∴a≥5或a≤1;
∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,
∵(x1+2)(x2+2)=13,
∴整理得:x1•x2+2(x2+x1)+4=13,
∴2a2−1+2(1−3a)+4=13,
∴a=4或a=−1,
∴a=−1;
故答案为−1.
本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.
10、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
11、8
【解析】
解:设边数为n,由题意得,
180(n-2)=3603
解得n=8.
所以这个多边形的边数是8.
12、1
【解析】
分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
【详解】
∵分式的值为0,
∴,
∴x=1.
故答案是:1.
考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
13、2
【解析】
分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
解:由题意可得:x2﹣9=1且x+2≠1,
解得x=2.
故答案为:2.
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.
三、解答题(本大题共5个小题,共48分)
14、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.
【解析】
(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;
(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.
【详解】
解:作
在中,
,则
答:城与台风中心之间的最小距离是
设上点,千米,则还有一点,有
千米
是等腰三角形,
是的垂直平分线,
在中,千米,千米
由勾股定理得,(千米)
千米,遭受台风影响的时间是:(小时)
答:城遭受这次台风影响个时间为小时
本题考查了含直角三角形的性质、等腰三角形的性质及勾股定理,正确理解题意是解题的关键.
15、 (1)证明见解析;(2)证明见解析;(3).
【解析】
(1)先根据线段垂直平分线的性质证明PB=PE,由ASA证明△BOQ≌△EOP;
(2)由(1)得出PE=QB,证出四边形BPEQ是平行四边形,再根据菱形的判定即可得出结论;
(3)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18−x,在Rt△ABE中,根据勾股定理可得,BE=10,得到,设PE=y,则AP=8−y,BP=PE=y,在Rt△ABP中,根据勾股定理可得,解得,在Rt△BOP中,根据勾股定理可得,由PQ=2PO即可求解.
【详解】
解:(1)∵垂直平分,
∴,,
∵四边形是矩形,
∴,
∴,
在与中,,
∴,
(2)∵
∴,
又∵,
∴四边形是平行四边形,
又∵,
∴四边形是菱形;
(3)∵,分别为,的中点,
∴,
设,则,在中,,
解得,,
∴,
设,则,,
在中,,
解得,
在中,,
∴.
本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.
16、6+2.
【解析】
先化简二次根式,再利用乘法分配律计算可得.
【详解】
原式=(2+2)×
=6+2.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.
17、见解析
【解析】
(1)证明:∵DF∥AE,EF∥AD,
∴四边形AEFD是平行四边形,∠2=∠AED,
又∵DE平分∠ADC,∴∠1=∠2,
∴∠AED=∠1.
∴AD=AE.
∴四边形AEFD是菱形.
(2)在菱形AEFD中,∵∠DAB=60°,
∴△AED为等边三角形.
∴DE=2.连接AF,与DE相交于O,则.
∴.
∴.
∴.
18、(1) (2)
【解析】
(1)先提公因式2,再利用完全平方公式进行分解即可;
(2)先提公因式(x-y),再利用平方差公式进行分解即可;
【详解】
解:(1)
.
(2).
.
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、48
【解析】
∵▱ABCD的周长=2(BC+CD)=40,
∴BC+CD=20①,
∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
∴S▱ABCD=4BC=6CD,
整理得,BC=CD②,
联立①②解得,CD=8,
∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.
故答案为48.
20、3或1.
【解析】
当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.
②当点落在边上时,如答图2所示.此时四边形为正方形.
【详解】
解:当为直角三角形时,有两种情况:
①当点落在矩形内部时,如答图1所示.
连结,
在中,,,
,
沿折叠,使点落在点处,
,
当为直角三角形时,只能得到,
点、、共线,即沿折叠,使点落在对角线上的点处,如图,
,,
,
设,则,,
在中,
,
,
解得,
;
②当点落在边上时,如答图2所示.
此时为正方形,
.
综上所述,的长为3或1.
故答案为:3或1.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
21、
【解析】
依据平行四边形的对角互相平分可得AO=3cm,在Rt△ABO中利用勾股定理可求AB长.
【详解】
∵四边形ABCD是平行四边形,
∴AO=AC=3cm.
在Rt△ABO中,OB=6cm,AO=3cm,
利用勾股定可得AB=.
故答案为3.
本题主要考查了平行四边形的性质、勾股定理,利用平行四边形的对角线互相平分求解三角形中某些线段的长度是解决这类问题通常的方法.
22、
【解析】
根据题意可得一元二次方程根的判别式为0,列出含k的等式,再将所求代数进行变形后整体代入求值即可.
【详解】
解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,
∴ ,
整理得, ,
∴
当时,
故答案为:.
本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.
23、金额与数量
【解析】
根据常量与变量的意义结合油的单价是不变的,而金额随着加油数量的变化在变化,据此即可得答案.
【详解】
常量是固定不变的量,变量是变化的量,
单价是不变的量,而金额是随着数量的变化而变化,
故答案为:金额与数量.
本题考查了常量与变量,熟练掌握常量与变量的概念是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)20%;(2)12.1.
【解析】
试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
(2)10800(1+0.2)=12960(本)
10800÷1310=8(本)
12960÷1440=9(本)
(9﹣8)÷8×100%=12.1%.
故a的值至少是12.1.
考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.
25、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
【解析】
(1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
【详解】
(1)由题意得,,
解得,,
∴点E的坐标为(1,2);
(2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
∴A(-1,0),D(2,0),
∴AD=3,
∵△ADP的面积为9,
∴△ADP边AD上的高为6,
∴点P的纵坐标为6,
当点P在y轴的上方时,-2x+4=6,
解得x=-1,
∴P(-1,6);
当点P在y轴的下方时,-2x+4=-6,
解得x=5,
∴P(5,-6);
综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
26、 (1)证明见解析;(2)∠BOE=75°.
【解析】
(1)由矩形ABCD,得到OA=OB,根据AE平分∠BAD,∠CAE=15°,即可证明△AOB是等边三角形;
(2)由等边三角形的性质,推出AB=OB,求出∠OBC的度数,根据等边三角形和等腰直角三角形的性质得到OB=BE,然后可求出∠BOE.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OA=OB,
∵AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∵∠CAE=15°,
∴∠BAC=60°,
∴△AOB是等边三角形.
(2)∵△AOB是等边三角形,
∴AB=OB,∠ABO=60°,
∴∠OBC=90°﹣60°=30°,
∵∠BAE=∠BEA=45°
∵AB=OB=BE,
∴∠BOE=∠BEO=(180°﹣30°)=75°.
本题主要考查了三角形的内角和定理,矩形的性质,等边三角形的性质和判定,角平分线的性质,等腰三角形的判定等知识点.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年黑龙江省九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西省钦州市名校数学九上开学预测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省淮北市数学九上开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。