2024年湖北省黄冈实验中学九上数学开学检测试题【含答案】
展开
这是一份2024年湖北省黄冈实验中学九上数学开学检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知关于x的方程mx2+2x﹣1=0有实数根,则m的取值范围是( )
A.m≥﹣1B.m≤1C.m≥﹣1且m≠0D.m≤1且m≠0
2、(4分)下列多项式中,可以提取公因式的是( )
A.ab+cdB.mn+m2
C.x2-y2D.x2+2xy+y2
3、(4分)已知一个直角三角形的两边长分别为3和4,则第三边长是( )
A.5B.25C.D.5或
4、(4分)下列函数中,一次函数是( )
A.B.C.D.
5、(4分)如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是( )
A.杨辉B.刘徽C.祖冲之D.赵爽
6、(4分)已知正比例函数的图象上两点、,且,下列说法正确的是
A.B.C.D.不能确定
7、(4分)计算的结果是( )
A.B.2C.1D.-5
8、(4分)小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是 ( )
A.平行四边形 B.矩形 C.正方形 D.梯形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次三项式是完全平方式,则的值是__________.
10、(4分)如图,矩形ABCD中,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=8,DC=6,则BE的长为______.
11、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
12、(4分)如图,在矩形中,对角线与相交于点,,,则的长为________.
13、(4分)在平面直角坐标系中,正比例函数与反比例函数的图象交于点,则_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
15、(8分)已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.
(1)如图,求点A的坐标;
(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;
(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.
16、(8分)如图,一张矩形纸片.点在这张矩形纸片的边上,将纸片折叠,使落在射线上,折痕为,点分别落在点处,
(1)若,则的度数为 °;
(2)若,求的长.
17、(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
18、(10分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
根据图表信息,解答下列问题:
(1)本次调查的总人数为______,表中m的值为_______;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.
20、(4分)若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.
21、(4分)如图,,,,,的长为________;
22、(4分)化简:=______________
23、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)
(1)请在图中建立直角坐标系并确定点C的位置;
(2)若营员们打算从点B处直接赶往C处,请用方向角B和距离描述点C相对于点B的位置.
25、(10分)下岗职工王阿姨利用自己的﹣技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场销售.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本不低于1536元,不高于1552元.
(1)问服装厂有哪几种生产方案?
(2)按照(1)中方案生产,服装全部售出至少可获得利润多少元?
(3)在(1)的条件下,服装厂又拿出6套服装捐赠给某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种方案生产的.
26、(12分)关于x的一元二次方程有两个不等实根,.
(1)求实数k的取值范围;
(2)若方程两实根,满足,求k的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分为两种情况,方程为一元一次方程和方程为一元二次方程,分别求出即可解答
【详解】
解:当m=0时,方程为2x﹣1=0,此方程的解是x=0.5,
当m≠0时,当△=22﹣4m×(﹣1)≥0时,方程有实数根,解得:m≥﹣1,
所以当m≥﹣1时,方程有实数根,
故选A.
此题考查了一元一次方程和为一元二次方程的解,解题关键在于分情况求方程的解
2、B
【解析】
直接利用提取公因式法分解因式的步骤分析得出答案.
【详解】
解:A.ab+cd,没有公因式,故此选项错误;
B.mn+m2=m(n+m),故此选项正确;
C.x2﹣y2,没有公因式,故此选项错误;
D.x2+2xy+y2,没有公因式,故此选项错误.
故选B.
本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.
3、D
【解析】
分为两种情况:①斜边是4有一条直角边是3,②3和4都是直角边,根据勾股定理求出即可.
【详解】
解:
分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是;
②3和4都是直角边,由勾股定理得:第三边长是=5;
即第三边长是5或,
故选D.
本题考查了对勾股定理的应用,注意:在直角三角形中的两条直角边a、b的平方和等于斜边c的平方.
4、A
【解析】
根据一次函数的定义即可判断.
【详解】
解:A、是一次函数;
B、x的系数不是非零常数,故不是一次函数;
C、x在分母上,故不是一次函数;
D、x的指数为2,故不是一次函数.
故选A.
本题考查了一次函数的定义.
5、D
【解析】
3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.
【详解】
由题意,可知这位伟大的数学家是赵爽.
故选:D.
考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.
6、A
【解析】
根据:正比例函数,y随x增大而减小;,y随x增大而增大.
【详解】
因为正比例函数,
所以,y随x增大而减小,
因为,图象上两点、,且,
所以,
故选A
本题考核知识点:正比例函数. 解题关键点:理解正比例函数性质.
7、A
【解析】
根据二次根式的运算法则即可求出答案.
【详解】
解:原式=
故选:A.
本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
8、A
【解析】
试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.
考点:1.平行四边形的判定;2.三角形中位线定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、17或-7
【解析】
利用完全平方公式的结构特征判断即可确定出k的值.
【详解】
解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7
此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.
10、
【解析】
∵四边形ABCD为矩形,
∴AB=DC=6,BC=AD=8,AD∥BC,∠B=90°.
∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,
∴∠DAC=∠D′AC.
∵AD∥BC,
∴∠DAC=∠ACB.
∴∠D′AC=∠ACB.
∴AE=EC.
设BE=x,则EC=8-x,AE=8-x.
∵在Rt△ABE中,AB2+BE2=AE2,
∴62+x2=(8-x)2,解得x=,即BE的长为.
故答案是:.
11、1
【解析】
解:解如图所示:在RtABC中,BC=3,AC=5,
由勾股定理可得:AB2+BC2=AC2
设旗杆顶部距离底部AB=x米,则有32+x2=52,
解得x=1
故答案为:1.
本题考查勾股定理.
12、
【解析】
根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.
【详解】
∵四边形ABCD是矩形,
∴OA=OB=OC=OD, ∠BAD=90°,
∵
∴△AOB是等边三角形,
∴OB=AB=1,
∴BD=2BO=2,
在Rt△BAD中,
故答案为
考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.
13、
【解析】
把代入可得:解得得,再把代入,即,解得.
【详解】
解:把代入可得:
解得,
∴
∵点也在图象上,
把代入,
即,
解得.
故答案为:8
本题考查了一次函数和反比例函数,掌握待定系数法求解析式是关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
15、(1)(1,0);(2);(3)存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形.
【解析】
(1)通过解一元二次方程可求出OA的长,结合点A在x轴正半轴可得出点A的坐标;
(2)连接CE,设OE=m,则AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,进而可得出点E的坐标,同理可得出点D的坐标,根据点D,E的坐标,利用待定系数法可求出直线DE的解析式;
(3)根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2),分AB为边和AB为对角线两种情况考虑:①当AB为边时,利用平行四边形的性质可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论;②当AB为对角线时,利用平行四边形的对角线互相平分,可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论.综上,此题得解.
【详解】
(1)解方程x2-12x+32=0,得:x1=2,x2=1.
∵OA、OC的长是方程x2-12x+32=0的两个根,且OA>OC,点A在x轴正半轴上,
∴点A的坐标为(1,0).
(2)连接CE,如图2所示.
由(1)可得:点C的坐标为(0,2),点B的坐标为(1,2).
设OE=m,则AE=CE=1-m.
在Rt△OCE中,∠COE=90°,OC=2,OE=m,
∴CE2=OC2+OE2,即(1-m)2=22+m2,
解得:m=3,
∴OE=3,
∴点E的坐标为(3,0).
同理,可求出BD=3,
∴点D的坐标为(5,2).
设直线DE解析式为:
∴
∴直线DE解析式为:
(3)∵点A的坐标为(1,0),点C的坐标为(0,2),点B的坐标为(1,2),
∴直线AC的解析式为y=-x+2,AB=2.
设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2).
分两种情况考虑,如图5所示:
①当AB为边时, ,
解得:c1=,c2=,
∴点Q1的坐标为(,),点Q2的坐标为(,);
②当AB为对角线时,,
解得: ,
∴点Q3的坐标为(,- ).
综上,存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形
本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A的坐标;(2)利用勾股定理,求出点D,E的坐标;(3)分AB为边和AB为对角线两种情况,利用平行四边形的性质求出点Q的坐标.
16、(1);(2)1
【解析】
(1)根据折叠可得∠BFG=∠GFB′,再根据矩形的性质可得∠DFC=40°,从而∠BFG=70°即可得到结论;
(2) 首先求出GD=9-=,由矩形的性质得出AD∥BC,BC=AD=9,由平行线的性质得出∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,证出∠DFG=∠DGF,由等腰三角形的判定定理证出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不变性,可知FB′=FB,由此即可解决问题.
【详解】
(1)根据折叠可得∠BFG=∠GFB′,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DGF=∠BFG,∠ADF=∠DFC,
∵
∴∠DFC=40°
∴∠BFD=140°
∴∠BFG=70°
∴∠DGF=70°;
(2)∵AG=,AD=9,
∴GD=9-=,
∵四边形ABCD是矩形,
∴AD∥BC,BC=AD=9,
∴∠DGF=∠BFG,
由翻折不变性可知,∠BFG=∠DFG,
∴∠DFG=∠DGF,
∴DF=DG=,
∵CD=AB=4,∠C=90°,
∴在Rt△CDF中,由勾股定理得:,
∴BF=BC-CF=9-,
由翻折不变性可知,FB=FB′=,
∴B′D=DF-FB′=-=1.
本题是四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.
17、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
18、 (1)120;45%;(2)补图见解析;(3)平均每天得到约1980人的肯定.
【解析】
(1)非常满意的人数÷所占百分比计算即可得;用满意的人数÷总人数即可得m
(2)计算出比较满意的n的值,然后补全条形图即可
(3)每天接待的游客×(非常满意+满意)的百分比即可
【详解】
(1)12÷10%=120;54÷120×100%=45%
(2)比较满意:120×40%=48(人);补全条形统计图如图.
(3)3600×(45%+10%)=1980(人).
答:该景区服务工作平均每天得到约1980人的肯定.
统计图有关的计算是本题的考点,熟练掌握其特点并正确计算是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、7.2
【解析】
试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.
解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,
∴BC2=AB2+AC2,
∴∠A=90°,
∵MD⊥AB,ME⊥AC,
∴∠A=∠ADM=∠AEM=90°,
∴四边形ADME是矩形,
∴DE=AM,
当AM⊥BC时,AM的长最短,
根据三角形的面积公式得:AB×AC=BC×AM,
∴6×1=10AM,
AM=4.1(cm),
即DE的最小值是4.1cm.
故答案为4.1.
考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.
20、1800
【解析】
多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.
21、12
【解析】
根据相似三角形的性质列比例式求解即可.
【详解】
∵,,,,
∴,
∴,
∴AC=12.
故答案为:12.
本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.
22、
【解析】
分析:把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,然后约分.
详解:原式==.
故答案为:.
点睛:分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.
23、22.5°
【解析】
四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
考点:矩形的性质;等腰三角形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)点C在点B北偏东45°方向上,距离点B的5km处.
【解析】
(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;
(2)利用所画图形,进而结合勾股定理得出答案.
【详解】
(1)根据A(-3,1),B(-2,-3)画出直角坐标系,
描出点C(3,2),如图所示:
(2)∵BC=5,
∴点C在点B北偏东45°方向上,距离点B的5km处.
此题主要考查了坐标确定位置以及勾股定理等知识,得出原点的位置是解题关键.
25、(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套
【解析】试题分析:
(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列不等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;
(2)根据每种型号的利润和数量都已说明,需求出总利润,根据一次函数的性质即可得 到利润最小值;
(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、1,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的方案.
试题解析:
(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,
解得16≤x≤1,
∵x是正整数,
∴x=16或17或1.
有以下生产三种方案:
生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装1套,乙型服装22套;
(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,
∵y随x的增大而减小,
∴x=1时,y最小值=266,
∴至少可获得利润266元
(3)解:服装厂采用的方案是:生产甲型服装16套,乙型服装24套.
26、 (1) k<;(2) k=1.
【解析】
(1)根据一元二次方程的根的判别式得出△>1,求出不等式的解集即可;
(2)根据根与系数的关系得出x1+x2=-(2k-1)=1-2k,x1•x2=k2,代入x1+x2+x1x2-1=1,即可求出k值.
【详解】
解:(1)∵关于x的一元二次方程x2+(2k-1)x+k2=1有两个不等实根x1,x2,
∴△=(2k-1)2-4×1×k2=-4k+1>1,
解得:k<,
即实数k的取值范围是k<;
(2)由根与系数的关系得:x1+x2=-(2k-1)=1-2k,x1•x2=k2,
∵x1+x2+x1x2-1=1,
∴1-2k+k2-1=1,
∴k2-2k=1
∴k=1或2,
∵由(1)知当k=2方程没有实数根,
∴k=2不合题意,舍去,
∴k=1.
本题考查了解一元二次方程根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键,注意用根与系数的关系解题时要考虑根的判别式,以防错解.
题号
一
二
三
四
五
总分
得分
批阅人
满意度
人数
所占百分比
非常满意
12
10%
满意
54
m
比较满意
n
40%
不满意
6
5%
相关试卷
这是一份2024年湖北省黄冈市黄梅实验中学九年级数学第一学期开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖北省黄冈市初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南广益实验中学数学九上开学质量检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。