2024年湖北省黄冈市黄梅实验中学九年级数学第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若关于x的不等式组的整数解有3个,则a的取值范围是( )
A.3<a≤4B.2<a≤3C.2≤a<3D.3≤a<4
2、(4分)方程中二次项系数一次项系数和常数项分别是( )
A.1,-3,1B.-1,-3,1C.-3,3,-1D.1,3,-1
3、(4分)若m>n,则下列各式错误的是( )
A.2m<2nB.-3m<-3nC.m+1>n+1D.m-5>n-5
4、(4分)汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为( )
A.B.C.D.
5、(4分)某铁工艺品商城某天销售了110件工艺品,其统计如表:
该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是( )
A.平均数B.众数C.中位数D.方差
6、(4分)一组数据:2,3,4,x中若中位数与平均数相等,则数x不可能是( )
A.1B.2C.3D.5
7、(4分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是( )
A.80°B.120°C.100°D.90°
8、(4分)下列给出的四个点中,在直线的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图, 是某地区 5 月份某周的气温折线图,则这个地区这个周的气温的极差是_____℃.
10、(4分)_______
11、(4分)如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.
12、(4分)如图,平行四边形ABCD的周长为20,对角线AC、BD交于点O,E为CD的中点,BD=6,则△DOE的周长为 _________ .
13、(4分)在菱形ABCD中,∠A=60,对角线BD=3,以BD为底边作顶角为120的等腰三角形BDE,则AE的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(2017四川省乐山市)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.
15、(8分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.
(1)当点C横坐标为4时,求点E的坐标;
(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;
(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.
16、(8分)如图,经过点的一次函数与正比例函数交于点.
(1)求,,的值;
(2)请直接写出不等式组的解集.
17、(10分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.
(1)点C的坐标为 ,点D的坐标为 ;
(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.
18、(10分)解下列方程
(1);
(2);
(3).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形CDEF内接于,,,则正方形的面积是________.
20、(4分)如图,在反比例函数与的图象上分别有一点,,连接交轴于点,若且,则__________.
21、(4分)如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.
22、(4分)如图,在平行四边形ABCD中,AB=,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为________.
23、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.
25、(10分)在△ABC中,AB=30,BC=28,AC=1.求△ABC的面积.
某学习小组经过合作交流给出了下面的解题思路,请你按照他们的解题思路完成解答过程.
26、(12分)(1)计算:
(2)解方程:(1-2x)2=x2-6x+9
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.
点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
2、A
【解析】
先把方程化为一般形式,然后可得二次项系数,一次项系数及常数项.
【详解】
解:把方程转化为一般形式得:x2−3x+1=0,
∴二次项系数,一次项系数和常数项分别是1,−3,1.
故选:A.
一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.
3、A
【解析】
按照不等式的性质逐项排除即可完成解答。
【详解】
解:∵m>n
∴2m>2n ,故A错误;’ -3m<-3n则B正确;m+1>n+1,即C正确;m-5>n-5,即D正确;故答案为A;
本题考查了不等式的基本性质,即给不等式两边同加或减去一个整数,不等号方向不变;给不等式两边同乘以一个正数,不等号方向不变;给不等式两边同乘以一个负数,不等号方向改变;
4、B
【解析】
根据“油箱中的油量=总油量﹣x公里消耗的油量”列出函数解析式,结合实际问题的情况即可求解.
【详解】
∵油箱中的油量=总油量﹣x公里消耗的油量,
∴邮箱中的油量(单位:)与行驶路程(单位:)的函数关系式为:y=50﹣0.1x,为一次函数,且x的取值范围为0≤x≤500,
∴符合条件的选项只有选项B.
故选B.
本题考查了根据实际问题建立数学模型及应用一次函数的知识解决实际问题,正确建立一次函数模型是解决问题的关键.
5、B
【解析】
根据众数的概念:数据中出现次数最多的数,即可得出他应该关注的统计量.
【详解】
由于众数是数据中出现次数最多的数,所以想要了解哪个货种的销售量最大,应该关注的统计量是这组数据中的众数.
故选:B.
本题主要考查统计的相关知识,掌握平均数,众数,中位数,方差的意义是解题的关键.
6、B
【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间(在第二位或第三位结果不影响);结尾;开始的位置.
【详解】
(1)将这组数据从小到大的顺序排列为2,3,x,4,
处于中间位置的数是3,x,
那么由中位数的定义可知,这组数据的中位数是(3+x)÷2,
平均数为(2+3+4+x)÷4,
∴(3+x)÷2=(2+3+4+x)÷4,
解得x=3,大小位置与3对调,不影响结果,符合题意;
(2)将这组数据从小到大的顺序排列后2,3,4,x,
中位数是(3+4)÷2=3.1,
此时平均数是(2+3+4+x)÷4=3.1,
解得x=1,符合排列顺序;
(3)将这组数据从小到大的顺序排列后x,2,3,4,
中位数是(2+3)÷2=2.1,
平均数(2+3+4+x)÷4=2.1,
解得x=1,符合排列顺序.
∴x的值为1、3或1.
故选B.
本题考查的知识点是结合平均数确定一组数据的中位数,解题关键是要明确中位数的值与大小排列顺序有关.
7、B
【解析】
【分析】根据圆内接四边形的性质求出∠A,再根据圆周角定理进行解答即可.
【详解】∵四边形ABCD为⊙O的内接四边形,
∴∠A=180°﹣∠BCD=180°-120°=60°,
由圆周角定理得,∠BOD=2∠A=120°,
故选B.
【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
8、D
【解析】
只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.
【详解】
解:A、当时,,则不在直线上;
B、当时,,则不在直线上;
C、当时,,则不在直线上;
D、当时,,则在直线上;
故选:D.
本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、10℃
【解析】
根据极差的定义进行计算即可
【详解】
解:∵根据折线图可得:本周的最高气温为30℃,最低气温为20℃,
∴极差是:30-20=10(℃)
故答案为:10℃
本题考查了极差的定义和折线图,熟练掌握极差是最大值和最小值的差是解题的关键
10、2019
【解析】
直接利用平方差公式即可解答
【详解】
=2019
此题考查平方差公式,解题关键在于掌握运算法则
11、 (a+b,c)
【解析】
平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.
【详解】
∵四边形ABCO是平行四边形,
∴AO=BC,AO∥BC,
∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,
∵O,A,C的坐标分别是(0,0),(a,0),(b,c),
∴B点的坐标为(a+b,c).
故答案是:(a+b,c).
本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.
12、1.
【解析】
试题分析:∵▱ABCD的周长为20cm,
∴2(BC+CD)=20,则BC+CD=2.
∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=6,
∴OD=OB=BD=3.
又∵点E是CD的中点,
∴OE是△BCD的中位线,DE=CD,
∴OE=BC,
∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=5+3=1,
即△DOE的周长为1.
故答案是1.
考点:三角形中位线定理.
13、或2
【解析】
四边形ABCD为菱形,∠A=60,BD=3,得△ABD为边长为3等边三角形,分别讨论A,E在同侧和异侧的情况,在通过∠ BED=120°算出即可
【详解】
画出示意图,分别讨论A,E在同侧和异侧的情况,
∵四边形ABCD为菱形,∠A=60,BD=3,
∴△ ABD为边长为3等边三角形,则AO=,
∵∠ BED=120°,则∠ OBE=30°,可得OE=,
则AE=,
同理可得OE’=,则AE’=,
所以AE的长度为或
本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
试题分析:根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.
试题解析:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.
考点:平行四边形的性质.
15、(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1
【解析】
(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;
(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+1),可得BC=t,AC=BE=(1﹣t),根据S=•BC•EB,计算即可;
(3)由(1)可知E(t﹣1,t),设x=1﹣t,y=t,可得y=x+1.
【详解】
解:(1)作CF⊥OA于F,EG⊥x轴于G.
∴∠CFO=∠EGO=90°,
令x=4,y=﹣4+1=2,
∴C(4,2),
∴CF=2,OF=4,
∵四边形OCDE是正方形,
∴OC=OE,OC⊥OE,
∵OC⊥OE,
∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,
∴∠EOG=∠OCF,
∴△CFO≌△OGE,
∴OG=OF=4,OG=CF=2,
∴G(﹣2,4).
(2)∵直线y=﹣x+1交y轴于B,
∴令x=0得到y=1,
∴B(0,1),
令y=0,得到x=1,
∴A(1,0),
∴OA=OB=1,∠OAB=∠OBA=45°,
∵∠AOB=∠EOC=90°,
∴∠EOB=∠COA,
∵OE=OC,
∴△EOB≌△COA,
∴BE=AC,∠OBE=∠OAC=45°,
∴∠EBC=90°,即EB⊥AB,
∵C(t,﹣t+1),
∴BC=t,AC=BE=(1﹣t),
∴S=•BC•EB=×t•(1﹣t)=﹣t2+1t.
(3)当点C在线段AB上运动时,由(1)可知E(t﹣1,t),
设x=1﹣t,y=t,
∴t=x+1,
∴y=x+1.
故答案为(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1.
本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
16、(1),,;(2)
【解析】
(1)将点(3,0)和点P的坐标代入一次函数的解析式求得m、b的值,然后将点P的坐标代入正比例函数解析式即可求得a的值;
(2)直接根据函数的图象结合点P的坐标确定不等式的解集即可.
【详解】
(1)∵正比例函数与过点的一次函数交于点.
∴
∴
∴
∴
∴
∴
∴
(2)直接根据函数的图象,可得不等式的解集为:
本题考查了求一次函数解析式,一次函数与一元一次不等式的问题,解题的关键是能够确定有关待定系数的值,难度不大.
17、(1)(-3,1);(0,-1)
(1)P(,0)
【解析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.
【详解】
(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)
令y=-1,解得x=0,∴点D的坐标为(0,-1)
(1)如图,连接CD,求出直线CD与x轴的交点即为P点.
设直线CD的解析式为y=kx+b,
把(-3,1),(0,1)代入得
解得
∴y=x-1
令y=0,解得x=
∴P(,0)
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
18、(1);(2),;(3),.
【解析】
(1)直接利用去分母进而解方程得出答案;
(2)直接利用提取公因式法分解因式解方程即可;
(3)直接利用配方法解方程得出答案.
【详解】
(1)
经检验,是原方程的根.
(2)
,或
,
(3)
,
此题主要考查了分式方程和一元二次方程的解法,正确掌握相关解题方法是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.8
【解析】
根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.
【详解】
∵根据题意,易得△ADE∽△EFB,
∴BE:AE=BF:DE=EF:AD=2:1,
∴2DE=BF,2AD=EF=DE,
由勾股定理得,DE+AD=AE,
解得:DE=EF=,
故正方形的面积是 =,
故答案为:0.8
本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.
20、
【解析】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,根据平行线分线段成比例定理得:NO=2MO=2,从而可得F(2,2),结合E(-1,1)可得直线EF的解析式,求出点G的坐标后即可求解.
【详解】
过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图:
∴EM∥GO∥FN
∵2EG=FG
∴根据平行线分线段成比例定理得:NO=2MO
∵E(-1,1)
∴MO=1
∴NO=2
∴点F的横坐标为2
∵F在的图象上
∴F(2,2)
又∵E(-1,1)
∴由待定系数法可得:直线EF的解析式为:y=
当x=0时,y=
∴G(0,)
∴OG=
故答案为:.
此题考查反比例函数的综合应用,平行线分线段成比例定理,待定系数法求一次函数的解析式,解题关键在于掌握待定系数法求解析式.
21、
【解析】
先根据正方形的性质和轴对称的性质找出使PF+PE取得最小值的点,然后根据勾股定理求解即可.
【详解】
∵正方形ABCD是轴对称图形,AC是一条对称轴,
∴点F关于AC的对称点在线段AD上,设为点G,连结EG与AC交于点P,则PF+PE的最小值为EG的长,
∵AB=4,AF=2,∴AG=AF=2,
∴EG=.
故答案为.
本题考查了正方形的性质,轴对称之最短路径问题及勾股定理,根据轴对称的性质确定出点P的位置是解答本题的关键.
22、3.
【解析】
试题分析:点B恰好与点C重合,且四边形ABCD是平行四边形,根据翻折的性质, 则AE⊥BC,BE=CE=3,在Rt△ABE中,由勾股定理得.故答案为3.
考点:3.翻折变换(折叠问题);3.勾股定理;3.平行四边形的性质.
23、1
【解析】
连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.
【详解】
如图,连接BE、DF交于点O.
∵四边形ABCD是正方形,
∴,.
∵是等腰直角三角形,
∴,,
∴.
在和△中,
∵,,,
∴,
∴.
∵
,
∴,
∴,,,,
∴.
故答案为1.
本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
由平行四边形的性质,得到AD∥BC,AD=BC,由,得到,即可得到结论.
【详解】
证明:四边形是平行四边形,
∴,.
∵,
∴.
∴,
∵,,
∴四边形是平行四边形.
本题考查了平行四边形的判定和性质,解题的关键是熟练掌握平行四边形的判定和性质进行证明.
25、△ABC的面积为2
【解析】
根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.
【详解】
解:过点D作AD⊥BC,垂足为点D.
设BD=x,则CD=28﹣x.
在Rt△ABD中,AB=30,BD=x,
由勾股定理可得AD2=AB2﹣BD2=302﹣x2,
在Rt△ACD中,AC=1,CD=28﹣x,
由勾股定理可得AD2=AC2﹣CD2=12﹣(28﹣x)2,
∴302﹣x2=12﹣(28﹣x)2,
解得:x=18,
∴AD2=AB2﹣BD2=302﹣x2=302﹣182=576,
∴AD=24,
S△ABC=BC•AD=×28×24=2
则△ABC的面积为2.
此题考查勾股定理,解题关键是根据题意正确表示出AD2的值.
26、(1)- (2)-2、
【解析】
(1)根据二次根式的运算法则进行运算;(2)运用开方知识解方程.
【详解】
(1)解:原式=3﹣15×+×
=3+
=;
(2)解:原方程可化为:
本题考核知识点:二次根式运算,解一元二次方程. 解题关键点:掌握二次根式运算法则和开方知识解方程.
题号
一
二
三
四
五
总分
得分
货种
A
B
C
D
E
销售量(件)
10
40
30
10
20
2024年湖北省黄冈市季黄梅县数学九年级第一学期开学监测模拟试题【含答案】: 这是一份2024年湖北省黄冈市季黄梅县数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省黄冈市黄梅县九年级数学第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖北省黄冈市黄梅县九年级数学第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年湖北省黄冈市黄梅实验中学数学九年级第一学期期末经典试题含答案: 这是一份2023-2024学年湖北省黄冈市黄梅实验中学数学九年级第一学期期末经典试题含答案,共7页。试卷主要包含了如图的几何体,它的主视图是,下列计算正确的是等内容,欢迎下载使用。