![2024年湖北省松滋市新江口镇第一中学九上数学开学考试试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16206257/0-1727675147318/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北省松滋市新江口镇第一中学九上数学开学考试试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16206257/0-1727675147379/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北省松滋市新江口镇第一中学九上数学开学考试试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16206257/0-1727675147437/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年湖北省松滋市新江口镇第一中学九上数学开学考试试题【含答案】
展开
这是一份2024年湖北省松滋市新江口镇第一中学九上数学开学考试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在的方格纸中,两点在格点上,线段绕某点逆时针旋转角后得到线段,点与对应,则角的大小为( )
A.B.C.D.
2、(4分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )
A.Q(3,-120°)B.Q(3,240°)C.Q(3,-500°)D.Q(3,600°)
3、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
4、(4分)化简的结果是( )
A.B.C.D.
5、(4分)如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是( )
A.△ABE≌△ACFB.点D在∠BAC的平分线上
C.△BDF≌△CDED.D是BE的中点
6、(4分)一家鞋店在一段时间内销售了某种男鞋200双,各种尺码鞋的销售量如下表所示:
一般来讲,鞋店老板比较关心哪种尺码的鞋最畅销,也就是关心卖出的鞋的尺码组成的一组数据是()
A.平均数B.中位数C.众数D.方差
7、(4分)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点
C.当乙摩托车到达A地时,甲摩托车距离A地kmD.经过小时两摩托车相遇
8、(4分)一家鞋店对上周某一品牌女鞋的销售量统计如下:
该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是( )
A.方差B.中位数C.平均数D.众数
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的解是_____.
10、(4分)已知一次函数,当时,对应的函数的取值范围是,的值为__.
11、(4分)将直线y=﹣2x﹣2向上平移5个单位后,得到的直线为_____.
12、(4分)下面是甲、乙两人10次射击成绩(环数)的条形统计图,则这两人10次射击命中环数的方差____.(填“>”、“<”或“=”)
13、(4分)如图,直线与x轴交点坐标为,不等式的解集是____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:
设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.
(1)求y与x之间的函数关系式;
(2)请判断y是否能等于62000,并说明理由.
15、(8分)某通信公司策划了两种上网的月收费方式:
设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)
(1) , , ;
(2)求与之间的函数解析式;
(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.
16、(8分)直线与x轴交于点A,与y轴交于点B,
(1)求点A、B的坐标,画出直线AB;
(2)点C在x轴上,且AC=AB,直接写出点C的坐标.
17、(10分)在平面直角坐标系中,点的坐标为,点和点的坐标分别为,,且,四边形是矩形
(1)如图,当四边形为正方形时,求,的值;
(2)探究,当为何值时,菱形的对角线的长度最短,并求出的最小值.
18、(10分)如果一个三角形满足条件:三角形的一个角与菱形的一个角重合,且菱形的这个角的对角顶点在三角形的这个角的对边上,则称这个菱形为该三角形的“亲密菱形”.如题(1),菱形AEFD为△ABC的“亲密菱形”.在图(2)中,请以∠BAC为重合角用直尺和圆规作出△ABC的“亲密菱形”AEFD.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知 ,那么的值为____________.
20、(4分)已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
21、(4分)在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形 、正方形 、…、正方形,使得点 …在直线l上,点 …在y轴正半轴上,则点 的横坐标是__________________。
22、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a>0的解集是_______
23、(4分)若分解因式可分解为,则=______。
二、解答题(本大题共3个小题,共30分)
24、(8分)完成下列各题
(1)计算:
(2)解方程:
25、(10分)如图,已知△ABC和△DEC都是等腰直角三角形, ,连接AE.
(1)如图(1),点D在BC边上,连接AD,ED延长线交AD于点F,若AB=4,求△ADE的面积
(2)如图2,点D在△ABC的内部,点M是AE的中点,连接BD,点N是BD中点,连接MN,NE,求证且.
26、(12分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.
(1)如图1,若点E,F分别在BC,CD边上.
求证:①;
②;
(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′,∠AOA′即为旋转角.
【详解】
解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′
∠AOA′即为旋转角,
∴旋转角为90°
故选:C.
考查了旋转的性质,解题的关键是能够根据题意确定旋转中心的知识,难度不大.
2、C
【解析】
根据中心对称的性质进行解答即可.
【详解】
∵P(3,60°)或P(3,﹣300°)或P(3,420°)
∴点P关于点O成中心对称的点Q的极坐标为Q(3,240°)或(3,-120°)或(3,600°),
∴C选项不正确,
故选C.
本题考查了极坐标的定义,中心对称,正确理解极坐标的定义、熟练掌握中心对称的性质是解题的关键.
3、C
【解析】
根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
故选C.
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
4、C
【解析】
根据二次根式的性质进行化简即可.
【详解】
∵a≥1,
∴原式=.
故选C.
本题主要考查二次根式的性质、化简,关键在于根据已知推出a≥1.
5、D
【解析】
根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.
【详解】
∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A
∴△ABE≌△ACF(AAS),正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴DF=DE故点D在∠BAC的平分线上,正确;
∵△ABE≌△ACF,AB=AC
∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°
∴△BDF≌△CDE(AAS),正确;
D. 无法判定,错误;
故选D.
6、C
【解析】
∵众数是在一组数据中,出现次数最多的数据,体现数据的最集中的一点,这样可以确定进货的数量,
∴鞋店老板最喜欢的是众数.
故选C.
7、C
【解析】
根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B地判定B正确;设两车相遇的时间为t,根据相遇问题列出方程求解即可;根据乙摩托车到达A地时,甲摩托车行驶了0.5小时,计算即可得解.
【详解】
A. 由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小,所以,乙摩托车的速度较快正确,故A项正确;
B. 因为甲摩托车行驶完全程需要0.6小时,所以经过0.3小时甲摩托车行驶到A,B两地的中点正确,故B项正确;
C. 当乙摩托车到达A地时,甲摩托车距离A地: km正确,故C项错误;
D. 设两车相遇的时间为t,根据题意得,,t= ,故D选正确.
故选:C.
本题考查了一次函数的实际应用.
8、D
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.
【详解】
解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故选:D.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x=﹣1.
【解析】
把方程两边平方后求解,注意检验.
【详解】
把方程两边平方得x+2=x2,
整理得(x﹣2)(x+1)=0,
解得:x=2或﹣1,
经检验,x=﹣1是原方程的解.
故本题答案为:x=﹣1.
本题考查无理方程的求法,注意无理方程需验根.
10、4.
【解析】
根据题意判断函数是减函数,再利用特殊点代入解答即可.
【详解】
当时,随的增大而减小,即一次函数为减函数,
当时,,当时,,
代入一次函数解析式得:,
解得,
故答案为:4.
本题考查求一次函数的解析式,掌握求解析式的待定系数法是解题关键.
11、y=﹣2x+3
【解析】
一次函数图像,即直线平移的原则是:上加下减,左加右减,据此即可求解.
【详解】
将直线y=﹣2x﹣2向上平移5个单位,得到直线y=﹣2x﹣2+5,即y=﹣2x+3;
故答案为:y=﹣2x+3;
该题主要考查了一次函数图像,即直线平移的方法:上加下减,左加右减,准确掌握平移的原则即可解题.
12、>
【解析】
先分别求出各自的平均数,再根据方差公式求出方差,即可作出比较.
【详解】
甲的平均数
则
乙的平均数
则
所以
本题属于基础应用题,只需学生熟练掌握方差的求法,即可完成.
13、
【解析】
根据直线y=kx+b与x轴交点坐标为(1,0),得出y的值不小于0的点都符合条件,从而得出x的解集.
【详解】
解:∵直线y=kx+b与x轴交点坐标为(1,0),
∴由图象可知,
当x≤1时,y≥0,
∴不等式kx+b≥0的解集是x≤1.
故答案是x≤1.
本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
三、解答题(本大题共5个小题,共48分)
14、 (1) ;(2) 不能等于.
【解析】
(1)根据A工地成本=甲在A的成本+乙在A的成本;B工地成本=甲在B的成本+乙在B的成本;总成本=A工地成本+ B工地成本.列出方程解出即可.
(2)把y=62000代入(1)中求出x,对比已知条件的范围即能得出答案;
【详解】
解:(1)
.
(2)当,解得,
∵,∴不符合题意,
∴不能等于.
本题考查用方程的知识解决工程问题的应用题,解题的关键是学会利用未知数,构建方程解决问题.
15、(1)45,50,0.05;(2);(3)若每月上网的时间为31小时,选择方式B能节省上网费.
【解析】
(1)根据函数图象可以得到m、n的值,然后根据15小时花费45元可以求得p的值;
(2)根据表格中的数据可以求得与x之间的函数关系式;
(3)当时,分别求出两种方式下的费用,然后比较大小即可解答本题.
【详解】
解:(1)由函数图象可得,
,,,
故答案为:45,50,;
(2)当时,,
当时,,
综上所述:;
(3)当时,
,
,
,
若每月上网的时间为31小时,选择方式B能节省上网费.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用函数的性质解答.
16、 (1)如图所示见解析;(2)C(1-,0)或C(1+,0)
【解析】
分析:令y=0求出与x轴交于点A,令x=0求出与y轴交于点B.然后用两点式画出直线AB即可;
(2)先利用勾股定理求出AB的长,然后分点C在点A的左侧和右侧两种情况写出点C的坐标即可.
详解:(1)令y=0,得x=1,∴A(1,0),
令x=0,得y=2,∴B(0,-2),
画出直线AB,如图所示:
(2)C(1-,0)或C(1+,0)
点睛:本题考查了求一次函数与坐标轴的交点,两点法画函数图像,勾股定理,坐标与图形及分类讨论的数学思想,求出点A与点B的坐标是解(1)的关键,分类讨论是解(2)的关键.
17、见详解.
【解析】
(1)先判断出∠ADE=∠BAO,即可判断出△ABO≌△ADE,得出DE=OA=3,AE=OB,即可求出m;
(2)先判断出BD⊥x轴时,求出AC的最小值,再求出DM=2,最后用勾股定理求出AE即可得出m.
【详解】
解:(1)如图1,过点D作DE⊥y轴于E,
∴∠AED=∠AOB=90°,
∴∠ADE+∠DAE=90°,
∵四边形ABCD是正方形,
∴AD=AB,∠BAD=90°,
∴∠DAE+∠BAO=90°,
∴∠ADE=∠BAO,
在△ABO和△ADE中,
,
∴△ABO≌△ADE,
∴DE=OA,AE=OB,
∵A(0,3),B(m,0),D(n,1),
∴OA=3,OB=m,OE=1,DE=n,
∴n=3,
∴OE=OA+AE=OA+OB=3+m=1,
∴m=1;
(2))如图3,由矩形的性质可知,BD=AC,
∴BD最小时,AC最小,
∵B(m,0),D(n,1),
∴当BD⊥x轴时,BD有最小值1,此时,m=n,
即:AC的最小值为1,
连接BD,AC交于点M,过点A作AE⊥BD于E,
由矩形的性质可知,DM=BM=BD=2,
∵A(0,3),D(n,1),
∴DE=1,
∴EM=DM-DE=1,
在Rt△AEM中,根据勾股定理得,AE=,
∴m=,即:
当m=时,矩形ABCD的对角线AC的长最短为1.
此题是四边形综合题,主要考查了正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是△ABO≌△ADE,解(2)的关键是△ADE≌△CBF和△AOB∽△DEA,解(3)的关键是作出辅助线,是一道中考常考题.
18、见解析,
【解析】
由菱形的性质可知AF是∠BAC的平分线,故点F在∠BAC的平分线与BC的交点上,作∠BAC的角平分线AF交BC于F,作线段AF的垂直平分线MN交AC于D,交AB于E,四边形AEFD即为所求.
【详解】
解:如图,菱形AEFD即为所求.
本题考查作图-复杂作图,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据非负数的性质先求出与的值,再根据有理数的乘方运算进一步计算即可.
【详解】
∵,
∴,,
∴,,
∴,
故答案为:1.
本题主要考查了非负数的性质以及有理数的乘方运算,熟练掌握相关概念是解题关键.
20、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
21、
【解析】
根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得所求点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.
【详解】
∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,
∴An(2n-1,2n-1-1)(n为正整数).
观察图形可知:点Bn是线段CnAn+1的中点,
∴点Bn的坐标是(2n-1,2n-1).
故答案为.
此题考查一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.
22、-3
相关试卷
这是一份2024-2025学年湖北省襄阳市吴店镇清潭第一中学九上数学开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省十堰市丹江口市九上数学开学教学质量检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省荆州松滋市数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)