2024年湖北省武昌区粮道街中学九年级数学第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列角度中,不能是某多边形内角和的是( )
A.600°B.720°C.900°D.1080°
2、(4分)数据-2,-1,0,1,2的方差是( )
A.0B.C.2D.4
3、(4分)如图,在中,,,,点在上,若四边形DEBC为菱形,则的长度为( )
A.7B.9C.3D.4
4、(4分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是( )
A.22.5°B.25°C.23°D.20°
5、(4分)因式分解的正确结果是( )
A.B.C.D.
6、(4分)关于反比例函数y=的下列说法正确的是( )
① 该函数的图象在第二、四象限;
② A(x1、y1)、B(x2、y2)两点在该函数图象上,若x1<x2,则y1<y2;
③ 当x>2时,则y>-2;
④ 若反比例函数y=与一次函数y=x+b的图象无交点,则b的范围是-4<b<4.
A.① ③B.①④C.②③D.②④
7、(4分)把方程化成(x+m)2=n的形式,则m、n的值是( )
A.4,13B.4,19C.-4,13D.-4,19
8、(4分)若关于x的分式方程无解,则m的值为( )
A.一l.5B.1C.一l.5或2D.一0.5或一l.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
10、(4分)如果一个n边形的内角和等于它的外角和的3倍,则n=______.
11、(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=_____度.
12、(4分)在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环,1.3环,则射击成绩较稳定的运动员是______(填“甲”或“乙”).
13、(4分)函数:中,自变量x的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子的长为13米,此人以0.5米/秒的速度收绳,6秒后船移动到点的位置,问船向岸边移动了大约多少米?(假设绳子是直的,结果精确到0.1米,参考数据:,)
15、(8分) (1)解不等式组: (2)解方程:.
16、(8分)文具商店里的画夹每个定价为20元,水彩每盒5元,其制定两种优惠办法:①买一个面夹赠送一盒水彩;②按总价的92%付款.一美术教师欲购买画夹4个,水彩若干盒(不少于4盒),设购买水彩x盒,付款y元.
(1)试分别建立两种优惠办法中y与x的函数关系式;
(2)美术老师购买水彩30盒,通过计算说明那种方法更省钱.
17、(10分)如图,四边形ABCD是平行四边形, EB⊥BC于B,ED⊥CD于D,BE、DE相交于点E,若∠E=62º,求∠A的度数.
18、(10分)某学习小组10名学生的某次数学测验成绩统计表如下:
(1)填空:x = ;此学习小组10名学生成绩的众数是 ;
(2)求此学习小组的数学平均成绩.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:×=____________.
20、(4分)如图,将三角形纸片的一角折叠,使点B落在AC边上的F处,折痕为DE.已知AB=AC=3,BC=4,若以点E,F,C为顶点的三角形与△ABC相似,那么BE的长是_______.
21、(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.
22、(4分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.
23、(4分)如图,DE为Rt△ABC的中位线,点F在DE上,且∠AFB=∠BAC=90°,若AB=4,AC=8,则EF的长为____.(结果保留根号)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,是一位护士统计一位病人的体温变化图,请根据统计图回答下列问题:
(1)病人的最高体温是达多少?
(2)什么时间体温升得最快?
(3)如果你是护士,你想对病人说____________________.
25、(10分)已知等腰三角形的周长为, 底边长是腰长的函数.
写出这个函数关系式;
求自变量的取值范围;
画出这个函数的图象.
26、(12分)化简求值: 1(+1)(-1)-(1-1),其中=1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用多边形的内角和公式即可作出判断.
【详解】
解:∵多边形内角和公式为(n-2)×180,
∴多边形内角和一定是180的倍数.
故选:A.
本题考查多边形内角和公式,在解题时要记住多边形内角和公式,并加以应用即可解决问题.
2、C
【解析】
先求出这组数据的平均数,再根据方差的公式进行计算即可.
【详解】
解:∵数据﹣2,﹣1,0,1,2的平均数是:(﹣2﹣1+0+1+2)÷5=0,
∴数据﹣2,﹣1,0,1,2的方差是:.
故选C.
本题考查方差的计算.
3、A
【解析】
根据勾股定理得到AC==25, 连接BD交AC于O,由菱形的性质得到BD⊥CE,BO=DO,EO=CO,求得CE=2OE=18,于是得到结论.
【详解】
解:连接BD,交AC于点O,
在△ABC中,∠ABC=90°,AB=20,BC=15,
∴AC==25,
连接BD交AC于O,
∵四边形BCDE为菱形,
∴BD⊥CE,BO=DO,EO=CO,
∴BO===12,
∴OC==9,
∴CE=2OE=18,
∴AE=7,
故选:A.
本题考查菱形的性质,三角形的面积公式,勾股定理,正确的识别图形是解题的关键.
4、A
【解析】
根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.
【详解】
解:∵四边形ABCD是正方形,
∴∠CAB=∠BCA=45°;
△ACE中,AC=AE,
则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;
∴∠BCE=∠ACE﹣∠ACB=22.5°.
考点:正方形的性质.
5、C
【解析】
首先提取公因式a,再利用平方差公式进行二次分解即可.
【详解】
=a(a-1)=,
故选:C.
此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.
6、B
【解析】
【分析】根据反比例函数的图象与性质逐一进行判断即可得.
【详解】①k=-4<0,图象在二、四象限,故①正确;
②若A(x1、y1)在二象限,B(x2、y2)在四象限,满足了x1<x2,但y1>y2,故②错误;
③当x=2时,y=-2,因为在每一象限内,y随着x的增大而增大,所以当x>2时,y>-2,故③错误;
④联立,则有,整理得:x2+bx+4=0,
因为两函数图象无交点,则方程x2+bx+4=0,无实数根,即b2-4×4<0,
所以-4<b<4,
故选B.
【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题的关键.
7、C
【解析】
根据配方的步骤把x2-8x+3=0配方变为(x+m)2=n的形式,即可得答案.
【详解】
x2-8x+3=0
移项得:x2-8x=-3
等式两边同时加上一次项系数一半的平方,得x2-8x+42=-3+42
配方得:(x-4)2=13
∴m=-4,n=13.
故选C.
此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
8、D
【解析】
方程两边都乘以x(x-1)得:(2m+x)x-x(x-1)=2(x-1),即(2m+1)x=-6,①
①∵当2m+1=0时,此方程无解,∴此时m=-0.2,
②∵关于x的分式方程无解,∴x=0或x-1=0,即x=0,x=1.
当x=0时,代入①得:(2m+1)×0=-6,此方程无解;
当x=1时,代入①得:(2m+1)×1=-6,解得:m=-1.2.
∴若关于x的分式方程无解,m的值是-0.2或-1.2.故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
【详解】
连接,
∵,是等腰直角三角形,
∴,∠ABC=90°
∵四边形是正方形
∴BD=BF,∠DBF=∠ABC=90°,
∴∠ABD=∠CBF,
在△DAP与△BAP中
∴,
∴,
点运动的路径长度即为点从到的运动路径,为.
故答案为:
本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
10、1
【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.
【详解】
解:由题意得:110(n-2)=360×3,
解得:n=1,
故答案为:1.
此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.
11、1
【解析】
先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.
【详解】
解:设∠BAE=x°.
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD.
∵AE=AB,
∴AB=AE=AD,
∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,
∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=1°+x°,
∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(1°+x°)=1°.
故答案为1.
点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.
12、乙
【解析】
直接根据方差的意义求解.
【详解】
∵S甲2=1.8,S乙2=1.3,1.3<1.8,
∴射击成绩比较稳定的是乙,
故答案为:乙.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
13、
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须,即.
三、解答题(本大题共5个小题,共48分)
14、船向岸边移动了大约3.3m.
【解析】
由题意可求出CD长,在中分别用勾股定理求出AD,AB长,作差即可.
【详解】
解:∵在中,,,,
∴.
∵此人以0.5m/s的速度收绳,6s后船移动到点D的位置,
∴.
∴.
∴.
答:船向岸边移动了大约3.3m.
本题是勾股定理的应用,灵活运用勾股定理求线段长是解题的关键,
15、 (1);(2)无解.
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)由①得:,
由②得:,
则不等式组的解集为;
(2)去分母得:,
解得:,
经检验是增根,分式方程无解.
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
16、 (1)见解析;(2)①更省钱.
【解析】
(1)根据题意可以得到y甲、y乙与乒乓球盒数x之间的函数关系式;
(2)将x=30分别代入(1)中的两个函数关系式,然后进行比较,即可解答本题.
【详解】
(1)两种优惠办法中y与x的函数关系式分别为:
①y=20×4+(x-4)×5=5x+60,
②y=(20×4+5x)×92%=4.6x+73.6;
(2)当x=30时,
y=20×4+(x-4)×5
=20×4+(30-4)×5=210(元),
y=(20×4+5x)×92%
=(20×4+5×30)×92%=211.6元,
∴办法①更省钱.
本题考查一次函数的应用,解题的关键是明确题意可以列出相应的函数关系式,并且可以求在x一定时的函数值.
17、118°
【解析】
根据EB⊥BC,ED⊥CD,可得∠EBC=90°,∠EDC=90°,然后根据四边形的内角和为360°,∠E=62°,求得∠C的度数,然后根据平行四边形的性质得出∠A=∠C,继而求得∠A的度数.
【详解】
解:∵EB⊥BC,ED⊥CD.
∴∠EBC=∠EDC=90°
∵∠E=62°
∴∠C=360°-∠EBC-∠EDC-∠E=118°
∵四边形ABCD为平行四边形
∴∠A=∠C=118°
本题考查了平行四边形的性质及多边形的内角和等知识,熟练掌握四边形的内角和为360°与平行四边形对角相等是解题的关键.
18、(1)2,90;(2)79分
【解析】
(1)①用总人数减去得60分、70分、90分的人数,即可求出x的值;
②根据众数的定义即一组数据中出现次数最多的数,即可得出答案;
(2)根据平均数的计算公式分别进行计算即可.
【详解】
解:(1)①∵共有10名学生,
∴x=10-1-3-4=2;
②∵90出现了4次,出现的次数最多,
∴此学习小组10名学生成绩的众数是90;
故答案为2,90;
(2)此学习小组的数学平均成绩是:
(分)
此题考查了众数和平均数,掌握众数和平均数的概念及公式是本题的关键,众数是一组数据中出现次数最多的数.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
直接利用二次根式乘法运算法则化简得出答案.
【详解】
=.
故答案为.
此题主要考查了二次根式的乘法运算,正确掌握二次根式乘法运算法则是解题关键.
20、或1.
【解析】
由于折叠前后的图形不变,要考虑△B′FC与△ABC相似时的对应情况,分两种情况讨论.
【详解】
解:根据△B′FC与△ABC相似时的对应关系,有两种情况:
①△B′FC∽△ABC时,,
又∵AB=AC=3,BC=4,B′F=BF,
∴,
解得BF=;
②△B′CF∽△BCA时,,
AB=AC=3,BC=4,B′F=CF,BF=B′F,
而BF+FC=4,即1BF=4,
解得BF=1.
故BF的长度是或1.
故答案为:或1.
本题考查相似三角形的性质.
21、6.5
【解析】
试题分析:依题意作图可知EF为Rt△ABC中位线,则EF=AB.在Rt△ABC中AB=
所以EF=6.5
考点:中位线定理
点评:本题难度较低,主要考查学生对三角形中位线定理知识点的掌握.
22、
【解析】
试题解析:设由题意可得:.
故答案为.
23、
【解析】
首先在Rt△ABC中,由勾股定理求出BC的长,然后利用中位线定理求出DE的长,再利用直角三角形斜边上的中线等于斜边的一半求出DF的长,进而求出EF的长.
【详解】
∵∠BAC=90°,AB=4,AC=8,
∴BC===
∵DE为Rt△ABC的中位线,
∴DE=BC=,
∵∠AFB=90º,
∴DF=AB=2,
∴EF=DE-DF=,
故答案为:.
本题主要考查三角形的基本概念和直角三角形的性质,掌握直角三角形的性质是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)1.1℃;(2)14-18;(3)注意身体的健康
【解析】
根据折线图可得,(1)这天病人的最高体温即折线图的最高点是1.1°C;
(2)14-18时,折线图上升得最快,故这段时间体温升得最快;
(3)根据折线图分析即可得出答案,答案不唯一,如注意身体的健康,符合折线图即可.
【详解】
(1)由图可知:病人的最高体温是达1.1℃;
(2)由图可知:体温升得最快的时间段为:14-18;
(3)注意身体的健康(只要符合图形即可,答案不唯一)
本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长的速度.
25、(1);(2);(3)见详解.
【解析】
(1)根据等腰三角形的周长计算公式表示即可;
(2)根据构成三角形三边的关系即可确定自变量的取值范围;
(3)可取两个点,在平面直角坐标系中描点、连线即可.
【详解】
解:(1)这个函数关系式为;
(2)由题意得,即,
解得,
所以自变量的取值范围为;
(3)当时,;当时,,函数关系式()的图象如图所示,
本题考查了一次函数关系式、函数自变量的取值范围及函数的图象,结合等腰三角形的性质及三角形三边的关系是解题的关键.
26、;0
【解析】
先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
【详解】
解:原式=1(x1-1)-1x1+x
=
=
当x=1时, 原式= 0
本题考查的是整式的化简求值,能够准确计算是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
60
70
80
90
人数(人)
1
3
x
4
湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案: 这是一份湖北省武汉市武昌区粮道街中学2023-2024学年九年级数学第一学期期末监测模拟试题含答案,共7页。试卷主要包含了函数与抛物线的图象可能是,在中,,,则,下列事件中,属于随机事件的是等内容,欢迎下载使用。
湖北省武昌区粮道街中学2023-2024学年九上数学期末调研试题含答案: 这是一份湖北省武昌区粮道街中学2023-2024学年九上数学期末调研试题含答案,共8页。
2023-2024学年湖北省武昌区粮道街中学九上数学期末统考试题含答案: 这是一份2023-2024学年湖北省武昌区粮道街中学九上数学期末统考试题含答案,共8页。试卷主要包含了下列说法正确的是,如图,一个半径为r等内容,欢迎下载使用。