搜索
    上传资料 赚现金
    英语朗读宝

    2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】

    2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】第1页
    2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】第2页
    2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】

    展开

    这是一份2024年湖北省武汉市高新区数学九年级第一学期开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值与方差:
    要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择( )
    A.甲B.乙C.丙D.丁
    2、(4分)到三角形三条边的距离相等的点是三角形( )的交点.
    A.三条中线B.三条角平分线C.三条高D.三条边的垂直平分线
    3、(4分)如图,在平面直角坐标系中,点在坐标轴上,是的中点,四边形是矩形,四边形是正方形,若点的坐标为,则点的坐标为( )
    A.B.C.D.
    4、(4分)已知整数x满足﹣5≤x≤5,y1=x+1,y2=2x+4,对于任意一个x,m都取y1、y2中的最小值,则m的最大值是( )
    A.﹣4 B.﹣6 C.14 D.6
    5、(4分)某班主任老师为了对学生乱花钱的现象进行教育指导,对班里每位同学一周内大约花钱数额进行了统计,如下表:
    根据这个统计表可知,该班学生一周花钱数额的众数、平均数是( )
    A.15,14B.18,14C.25,12D.15,12
    6、(4分)某校在体育健康测试中,有名男生“引体向上”的成绩(单位:次)分别是,,,,,,,,这组数据的中位数和众数分别是( )
    A.,B.,C.,D.,
    7、(4分)如图,平面直角坐标系中,在边长为1的正方形的边上有—动点沿正方形运动一周,则的纵坐标与点走过的路程之间的函数关系用图象表示大致是( )
    A. B. C. D.
    8、(4分)如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为( )
    (1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.
    A.1个B.2个C.3个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)
    10、(4分)若一个多边形的内角和是900º,则这个多边形是 边形.
    11、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.
    12、(4分)如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
    13、(4分)如图,平行四边形OABC的顶点O、A、C的坐标分别是(0,0)、(6,0)、(2,4),则点B的坐标为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)关于x、y的方程组的解满足x﹣2y≥1,求满足条件的k的最大整数值.
    15、(8分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
    (1)补全条形统计图;
    (2)求出扇形统计图中册数为4的扇形的圆心角的度数;
    (3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
    16、(8分)已知,如图(1),a、b、c是△ABC的三边,且使得关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,同时使得关于x的方程x2+2ax+c2=0也有两个相等的实数根,D为B点关于AC的对称点.
    (1)判断△ABC与四边形ABCD的形状并给出证明;
    (2)P为AC上一点,且PM⊥PD,PM交BC于M,延长DP交AB于N,赛赛猜想CD、CM、CP三者之间的数量关系为CM+CD=CP,请你判断他的猜想是否正确,并给出证明;
    (3)已知如图(2),Q为AB上一点,连接CQ,并将CQ逆时针旋转90°至CG,连接QG,H为GQ的中点,连接HD,试求出.
    17、(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    18、(10分)已知函数y=x+(x>0),它的图象犹如老师的打钩,因此人称对钩函数.下表是y与x的几组对应值:
    请你根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究.
    (1)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
    (2)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
    (3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为 .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,延长正方形的边到,使,则________度.
    20、(4分)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是S甲2=0.53,S乙2=0.51,S丙2=0.43,则三人中成绩最稳定的是______(填“甲”或“乙”或“丙”)
    21、(4分)如图,△ABC中,D,E分别 是边AB,AC的中点.若DE=2,则BC= .
    22、(4分)在中,若∠A=38°,则∠C=____________
    23、(4分)如图,已知一次函数y=kx+b经过A(2,0),B(0,﹣1),当y>0时,则x的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
    25、(10分)如图,在长方形中,,,动点、分别从点、同时出发,点以2厘米/秒的速度向终点移动,点以1厘米/秒的速度向移动,当有一点到达终点时,另一点也停止运动.设运动的时间为,问:
    (1)当秒时,四边形面积是多少?
    (2)当为何值时,点和点距离是?
    (3)当_________时,以点、、为顶点的三角形是等腰三角形.(直接写出答案)
    26、(12分)化简求值: 1(+1)(-1)-(1-1),其中=1.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    在这四位同学中,丙、丁的平均时间一样,比甲、乙的用时少,但丁的方差小,成绩比较稳定,由此可知,可选择丁,故选D.
    2、B
    【解析】
    到三角形三条边距离相等的点是三角形的内心.
    【详解】
    解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.
    故选:B.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    3、D
    【解析】
    过点D作DH⊥y轴,交y轴于H,根据矩形和正方形的性质可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根据角的和差故关系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可证明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由点E为OA中点可得OF=2FC,即可求出FC的长,进而可得HE的长,即可求出OH的长,即可得点D坐标.
    【详解】
    过点D作DH⊥y轴,交y轴于H,
    ∵四边形是矩形,四边形是正方形,
    ∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,
    ∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,
    ∴∠OFE=∠FBC,
    同理:∠OEF=∠BFC,
    在△OEF和△CFB中,,
    ∴BC=OF=OA,FC=OE,
    ∵点E为OA中点,
    ∴OA=2OE,
    ∴OF=2OE,
    ∴OC=3OE,
    ∵点C坐标为(3,0),
    ∴OC=3,
    ∴OE=1,OF=2,
    同理:△HDE≌△OEF,
    ∴HD=OE=1,HE=OF=2,
    ∴OH=OE+HE=3,
    ∴点D坐标为(1,3),
    故选:D.
    本题考查正方形的性质、矩形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.
    4、D
    【解析】
    根据题意可得知﹣5≤x≤5,当x=5时,m取最大值,将x=5代入即可得出结论.
    【详解】
    解:已知对于任意一个x,m都取y1,y2中的最小值,
    且求m得最大值,
    因为y1,y2均是递增函数,
    所以在x=5时,m取最大值,
    即m取x=5时,y1,y2中较小的一个,是y1=6.
    故选D.
    本题考察直线图像的综合运用,能够读懂题意确定m是解题关键.
    5、A
    【解析】
    根据众数和平均数的定义求解.
    【详解】
    ∵众数是数据中出现次数最多的数,
    ∴该班学生一周花钱数额的众数为15;
    ∵平均数是指在一组数据中所有数据之和再除以数据的个数,
    ∴该班学生一周花钱数额的平均数=(5×7+10×12+15×18+20×10+25×3)÷50=1.
    故选A.
    考点:1.众数;2.算术平均数.
    6、B
    【解析】
    先把原数据按由小到大排列,然后根据中位数和众数的定义求解.
    【详解】
    解:原数据按由小到大排列为:7,8,9,10,1,1,14,16,
    所以这组数据的中位数==11,众数为1.
    故选:B.
    本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    7、D
    【解析】
    根据正方形的边长即可求出AB=BC=CD=DA=1,然后结合图象可知点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,再根据点P运动的位置逐一分析,用排除法即可得出结论.
    【详解】
    解:∵正方形ABCD的边长为1,
    ∴AB=BC=CD=DA=1
    由图象可知:点A的纵坐标为2,线段BC上所有点的纵坐标都为1,线段DA上所有点的纵坐标都为2,
    ∴当点P从A到B运动时,即0<S≤1时,点P的纵坐标逐渐减小,故可排除选项A;当点P到点B时,即当S=1时,点P的纵坐标y=1,故可排除选项B;当点P从B到C运动时,即1<S≤2时,点P的纵坐标y恒等于1,故可排除C;当点P从C到D运动时,即2<S≤3时,点P的纵坐标逐渐增大;当点P从D到A运动时,即3<S≤4时,点P的纵坐标y恒等于2,
    故选D.
    此题考查的是根据图形上的点的运动,找出对应的图象,掌握横坐标、纵坐标的实际意义和根据点的不同位置逐一分析是解决此题的关键.
    8、C
    【解析】
    仔细分析图象特征,根据横轴和纵轴的意义依次分析各小题即可作出判断.
    【详解】
    解:由图可得,在x=40时,速度为0,故(1)(4)正确;
    AB段,y的值相等,故速度不变,故(2)正确;
    x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;
    故选C.
    本题考查实际问题的函数图象.实际问题的函数图象是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、甲.
    【解析】
    试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.
    考点:方差.
    10、七
    【解析】
    根据多边形的内角和公式,列式求解即可.
    【详解】
    设这个多边形是边形,根据题意得,

    解得.
    故答案为.
    本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
    11、1
    【解析】
    利用菱形的面积等于对角线乘积的一半求解.
    【详解】
    解:菱形的面积=×1×4=1.
    故答案为1.
    本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角). 记住菱形面积=ab(a、b是两条对角线的长度).
    12、
    【解析】
    由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
    【详解】
    解:由直线a∥b∥c,根据平行线分线段成比例定理,
    即可得,
    又由AC=3,CE=5,DF=4
    可得:
    解得:BD=.
    故答案为.
    此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
    13、(8,4)
    【解析】
    首先证明OA=BC=6,根据点C坐标即可推出点B坐标;
    【详解】
    解:∵A(6,0),
    ∴OA=6,
    ∵四边形OABC是平行四边形,
    ∴OA=BC=6,
    ∵C(2,4),
    ∴B(8,4),
    故答案为(8,4).
    本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是熟练掌握基本知识属于中考常考题型.
    三、解答题(本大题共5个小题,共48分)
    14、满足条件的k的最大整数值为1.
    【解析】
    将两方程相减得出x,y的值,再把x,y的值代入x﹣1y≥1,即可解答
    【详解】
    解关于x,y的方程组 ,得 ,
    把它代入x﹣1y≥1得,3﹣k﹣1(3k﹣6)≥1,
    解得k≤1,
    所以满足条件的k的最大整数值为1.
    此题考查二元一次方程组的解和解一元一次不等式,解题关键在于求出x,y的值再代入
    15、(1)见解析(2)75°(3)3人
    【解析】
    (1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
    (2)用4册的人数除以总人数乘以360°即可解答
    (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
    【详解】
    (1)抽查的学生总数为6÷25%=24(人),
    读书为5册的学生数为24-5-6-4=9(人)
    则条形统计图为:
    (2) =75°
    (3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
    此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
    16、(1)△ABC是等腰直角三角形.四边形ABCD是正方形;(2)猜想正确.(3)
    【解析】
    (1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;根据根的判别式=0即可解决问题;
    (2)猜想正确.如图1中,作PE⊥BC于E,PF⊥CD于F.只要证明△PEM≌△PFD即可解决问题;
    (3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.只要证明△CKH≌△GDH,△DHK是等腰直角三角形即可解决问题.
    【详解】
    解:(1)结论:△ABC是等腰直角三角形.四边形ABCD是正方形;
    理由:∵关于x的方程(b+c)x2+2ax﹣c+b=0有两个相等的实数根,
    ∴4a2﹣4(b+c)(b﹣c)=0,
    ∴a2+c2=b2,
    ∴∠B=90°,
    又∵关于x的方程x2+2ax+c2=0也有两个相等的实数根,
    ∴4a2﹣4c2=0,
    ∴a=c,
    ∴△ABC是等腰直角三角形,
    ∵D、B关于AC对称,
    ∴AB=BC=CD=AD,
    ∴四边形ABCD是菱形,
    ∵∠B=90°,
    ∴四边形ABCD是正方形.
    (2)猜想正确.
    理由:如图1中,作PE⊥BC于E,PF⊥CD于F.
    ∵四边形ABCD是正方形,
    ∴∠PCE=∠PCF=45°,
    ∵PE⊥CB,PF⊥CD,
    ∴PE=PF,
    ∵∠PFC=∠PEM=∠ECF=90°,PM⊥PD,
    ∴∠EPF=∠MPD=90°,四边形PECF是正方形,
    ∴∠MPE=∠DPF,
    ∴△PEM≌△PFD,
    ∴EM=DF,
    ∴CM+CCE﹣EM+CF+DF=2CF,
    ∵PC=CF,
    ∴CM+CD=PC.
    (3)连接DG、CH,作QK⊥CD于K.则四边形BCKQ是矩形.
    ∵∠BCD=∠QCG=90°,
    ∴∠BCQ=∠DCG,
    ∵CB=CD,CQ=CG,
    ∴△CBQ≌△CDG,
    ∴∠CBQ=∠CDG=90°,BQ=DG=CK,
    ∵CQ=CG,QH=HG,
    ∴CH=HQ=HG,CH⊥QG,
    ∵∠CHO=∠GOD,∠COH=∠GOD,
    ∴∠HGD=∠HCK,
    ∴△CKH≌△GDH,
    ∴KH=DH,∠CHK=∠GHD,
    ∴∠CHG=∠KHD=90°,
    ∴△DHK是等腰直角三角形,
    ∴DK=AQ=DH,
    ∴.
    本题考查四边形综合题、正方形的性质和判定.等腰直角三角形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    17、(1)BD∥AC;(2);(3)
    【解析】
    (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
    (2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
    (3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.
    【详解】
    (1),,
    ,,点B为线段OA的中点,
    点D为OC的中点,即BD为的中位线,

    (2)如图1,作于点F,取AB的中点G,则,
    ,BD与AC的距离等于2,

    在中,,,点G为AB的中点,

    是等边三角形,.

    设,则,
    根据勾股定理得:,


    点C在x轴的正半轴上,
    点C的坐标为;
    (3)如图2,当四边形ABDE为平行四边形时,,

    点D为OC的中点,




    点C在x轴的正半轴上,
    点C的坐标为,
    设直线AC的解析式为.
    将,得

    解得:.
    直线AC的解析式为.
    此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.
    18、(1)画图见解析;(2):x=1时,y有最小值2,当x<1时,y随x的增大而减小;(3)1≤a≤4
    【解析】
    (1)根据描出的点,画出该函数的图象即可;
    (2)①当x=1时,求得y有最小值2;②根据函数图象即可得到结论;
    (3)根据x取不同值时,y所对应的取值范围即可得到结论.
    【详解】
    解:(1)函数图象如图所示;
    (2)①当x=1时,y有最小值2;
    ②当x<1时,y随x的增大而减小;
    (3)当a≤x≤4时,y的取值范围为2≤y≤4,则a的取值范围为1≤a≤4,
    故答案为(1)画图见解题过程;(2)①x=1时,y有最小值2;②当x<1时,y随x的增大而减小;(3)1≤a≤4.
    本题考查了反比例函数的性质,函数图象的画法,画出函数图象是解本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、22.5
    【解析】
    连接BD,根据等边对等角及正方形的性质即可求得∠E的度数.
    【详解】
    连接BD,如图所示:
    则BD=AC
    ∵BE=AC
    ∴BE=BD
    ∴∠E=(180°-90°-45)°=22.5°.
    故答案是:.
    考查到正方形对角线相等的性质.
    20、丙
    【解析】
    根据方差的定义,方差越小数据越稳定,即可得出答案.
    【详解】
    ∵S甲2=0.53,S乙2=0.51,S丙2=0.43,
    ∴S甲2>S乙2>S丙2,
    ∴三人中成绩最稳定的是丙;
    故答案为:丙.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    21、1.
    【解析】
    试题分析:根据题意画出图形,再由三角形的中位线定理进行解答即可.
    试题解析:∵△ABC中,D、E分别是△ABC的边AB、AC的中点,DE=2
    ∴DE是△ABC的中位线,
    ∴BC=2DE=2×2=1.
    考点:三角形中位线定理.
    22、38°
    【解析】
    根据平行四边形对角相等即可求解.
    【详解】
    解:∵平行四边形ABCD中,∠A=38°,
    ∴∠C=∠A=38°,
    故答案为:38°.
    本题考查了平行四边形的性质,要知道平行四边形对角相等.
    23、x>1
    【解析】
    利用待定系数法可得直线AB的解析式为y=x−1,依据当y>0时,x−1>0,即可得到x的取值范围.
    【详解】
    解:由A(1,0),B(0,﹣1),可得直线AB的解析式为y=x﹣1,
    ∴当y>0时,x﹣1>0,
    解得x>1,
    故答案为:x>1.
    本题主要考查了一次函数与不等式之间的联系,直线上任意一点的坐标都满足函数关系式y=kx+b,解题关键是求出直线解析式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
    25、(1)5厘米2;(2)秒或秒;(3)秒或秒或秒或秒.
    【解析】
    试题分析:(1)求出BP,CQ的长,即可求得四边形BCQP面积.
    (2)过Q点作QH⊥AB于点H,应用勾股定理列方程求解即可.
    (3)分PD=DQ,PD=PQ,DQ=PQ三种情况讨论即可.
    (1)当t=1秒时,BP=6-2t=4,CQ=t=1,
    ∴四边形BCQP面积是厘米2.
    (2)如图,过Q点作QH⊥AB于点H,则PH=BP-CQ=6-3t,HQ=2,
    根据勾股定理,得, 解得.
    ∴当秒或秒时,点P和点Q距离是3cm.
    (3)∵,
    当PD=DQ时,,解得或(舍去);
    当PD=PQ时,,解得或(舍去);
    当DQ=PQ时,,解得或.
    综上所述,当秒或秒或秒或秒时, 以点P、Q、D为顶点的三角形是等腰三角形.
    考点:1.双动点问题;2.矩形的性质;3.勾股定理;4.等腰三角形的性质;5.分类思想的应用.
    26、;0
    【解析】
    先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.
    【详解】
    解:原式=1(x1-1)-1x1+x
    =
    =
    当x=1时, 原式= 0
    本题考查的是整式的化简求值,能够准确计算是解题的关键.
    题号





    总分
    得分
    批阅人




    (秒)
    30
    30
    28
    28
    1.21
    1.05
    1.21
    1.05
    学生花钱数(元)
    5
    10
    15
    20
    25
    学生人数
    7
    12
    18
    10
    3
    x
    1
    2
    3
    4
    y
    4
    3
    2
    2
    2
    3
    4
    序号
    函数图象特征
    函数变化规律
    示例1
    在直线x=1右侧,函数图象呈上升状态
    当x>1时,y随x的增大而增大
    示例2
    函数图象经过点(2,2)
    当x=2时,y=2

    函数图象的最低点是(1,2)


    在直线x=1左侧,函数图象呈下降状态

    相关试卷

    2024年湖北省襄阳市数学九年级第一学期开学预测试题【含答案】:

    这是一份2024年湖北省襄阳市数学九年级第一学期开学预测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024年湖北省武汉市四校联考九年级数学第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖北省武汉市数学九年级第一学期开学学业水平测试试题【含答案】:

    这是一份2024年湖北省武汉市数学九年级第一学期开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map