2024年湖北省襄阳市襄州区龙王中学数学九年级第一学期开学学业质量监测试题【含答案】
展开
这是一份2024年湖北省襄阳市襄州区龙王中学数学九年级第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)化简的结果是( )
A.9B.3C.3D.2
2、(4分)在中,,则的长为( )
A.2B.C.4D.4或
3、(4分)某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表:
请你估计这100名同学的家庭一个月节约用水的总量大约是( )
A.180tB.230tC.250tD.300t
4、(4分)△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )
A.∠A: ∠B: ∠C =3∶4∶5B.∠A=∠B+∠C
C.a2=(b+c)(b-c)D.a:b:c =1∶2∶
5、(4分)一次函数与的图象如图所示,有下列结论:①;②;③当时,其中正确的结论有( )
A.个B.个C.个D.个
6、(4分)甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是( )
A.从甲袋摸到黑球的概率较大
B.从乙袋摸到黑球的概率较大
C.从甲、乙两袋摸到黑球的概率相等
D.无法比较从甲、乙两袋摸到黑球的概率
7、(4分)如图,在平行四边形中,按以下步骤作图:(1)分别以A、B为圆心,以大于AB为半径画弧,两弧相交于P、Q两点;(2)连接PQ分别交AB、CD于EF两点;(3)连接AE、BE,若DC=5,EF=3,则△AEB的面积为( )
A.15B.C.8D.10
8、(4分)五根小木棒,其长度分别为,,,,,现将它们摆成两个直角三角形,如图,其中正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y1____y2(填“>”或“BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
23、(4分)命题“等腰三角形两底角相等”的逆命题是_______
二、解答题(本大题共3个小题,共30分)
24、(8分)计算或解方程:
(1)计算:+;
(2)解方程:
25、(10分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.
26、(12分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?
(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先进行二次根式的化简,再进行二次根式的除法运算求解即可.
【详解】
解:
=1÷
=1.
故选:B.
本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.
2、D
【解析】
分b是斜边、b是直角边两种情况,根据勾股定理计算即可.
【详解】
解:当b是斜边时,c=,
当b是直角边时,c=,
则c=4或,
故选:D.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
3、B
【解析】
利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量= =2.3,
∴估计这100名同学的家庭一个月节约用水的总量大约是=2.3×100=230t.
故选B.
4、A
【解析】
分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.
详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;
根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;
根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;
根据a、b、c的关系,可直接设a=x,b=2x,c=x,可知a2+c2=b2,可以构成直角三角形,故不正确.
故选A.
点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.
5、B
【解析】
利用一次函数的性质分别判断后即可确定正确的选项.
【详解】
解:①∵的图象与y轴的交点在负半轴上,
∴a<0,
故①错误;
②∵的图象从左向右呈下降趋势,
∴k<0,故②错误;
③两函数图象的交点横坐标为4,
当x<4时, 在的图象的上方,即y1>y2,故③正确;
故选:B.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标.利用数形结合是解题的关键.
6、B
【解析】
试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.
考点:概率的计算
7、B
【解析】
利用基本作图得到EF⊥AB,再根据平行四边形的性质得到AB=CD=5,然后利用三角形面积公式计算.
【详解】
解:由作图得EF垂直平分AB,
即EF⊥AB,
∵四边形ABCD为平行四边形,
∴AB=CD=5,
∴△AEB的面积=×5×3=.
故选:B.
本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
8、C
【解析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、72+242=252,152+202≠242,(7+15)2+202≠252,故A不正确;
B、72+242=252,152+202≠242,故B不正确;
C、72+242=252,152+202=252,故C正确;
D、72+202≠252,242+152≠252,故D不正确,
故选C.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、>
【解析】
分别把点A(-1,y1),点B(-1,y1)的坐标代入函数y=3x,求出点y1,y1的值,并比较出其大小即可.
【详解】
∵点A(-1,y1),点B(-1,y1)是函数y=3x的图象上的点,
∴y1=-3,y1=-6,
∵-3>-6,
∴y1>y1.
10、2
【解析】
将x=2代入函数解析式可得出y的值.
【详解】
由题意得:
y=2×2−2=2.
故答案为:2.
此题考查函数值,解题关键在于将x的值代入解析式.
11、30cm1
【解析】
根据直角三角形的斜边上中线性质求出斜边长,然后根据三角形的面积解答即可.
【详解】
解:∵直角三角形斜边上的中线是6cm,
∴斜边长为11cm,
∴面积为:cm1,
故答案为:30cm1.
本题考查了直角三角形斜边上中线性质的应用,解此题的关键是根据性质求出斜边的长,注意:直角三角形斜边上的中线等于斜边的一半.
12、2或4.
【解析】
过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.
【详解】
如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE;
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2,
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
又∵BD=6,
∴BE=×6÷cs30°=3÷=2,
∴BF1=BF2=BF1+F1F2=2+2=4,
故BF的长为2或4.
故答案为:2或4.
本题考查全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题关键,(3)要注意符合条件的点F有两个.
13、0,2
【解析】
求出不等式2x+2>3x﹣2的解集,再求其非负整数解.
【详解】
解:移项得,﹣2x﹣3x>﹣6﹣4,
合并同类项得,﹣5x>﹣20,
系数化为2得,x<2.
故其非负整数解为:0,2.
本题考查了一元一次不等式的整数解,解答此题不仅要明确不等式的解法,还要知道非负整数的定义.解答时尤其要注意,系数为负数时,要根据不等式的性质3,将不等号的方向改变.
三、解答题(本大题共5个小题,共48分)
14、(1)a=-5;(2)可以看作二元一次方程组的解.
【解析】
(1)首先利用待定系数法求得直线的解析式,然后直接把P点坐标代入可求出a的值;
(2)利用待定系数法确定l2得解析式,由于P(-2,a)是l1与l2的交点,所以点(-2,-5)可以看作是解二元一次方程组所得.
【详解】
.解:(1)设直线 的解析式为y=kx+b,将(2,3),(-1,-3)代入,
,解得,所以y=2x-1.
将x=-2代入,得到a=-5;
(2)由(1)知点(-2,-5)是直线与直线 交点,则:y=2.5x;
因此(-2,a)可以看作二元一次方程组的解.
故答案为:(1)a=-5;(2)可以看作二元一次方程组的解.
本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.
15、 (1)见解析;(2)1.
【解析】
(1)如图,连接,交于点,作直线交于点,点即为所求;
(2)求出,即可解决问题.
【详解】
(1)如图,点即为所求;
(2),,
,
,
,
,
四边形是平行四边形,
,,
平行四边形的周长为1.
本题考查作图——复杂作图,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题.
16、(1);(2)①见解析;②起跑后分钟,两人之间的距离不能超过米,理由见解析.
【解析】
(1)设乙从B处跑到A处的过程中y与x的函数关系式为y=kx+b,把(0,10)和(100,0)代入求出k,b的值即可,
(2)①设,两直线相交于点.过点作轴的垂线,交直线于点,
在射线上截取,使过点作轴的垂线,则垂足即为所求点.
②由两人有相距200到相遇用时1秒,由a>b,,起跑后分钟(即秒),两人处于相遇过后,但乙未到达处,则计算乙在90秒内离开B距离比较即可.
【详解】
(1)设
把分别代入,可求得
∴解析式为
(2)如图:
设,两直线相交于点.
步骤为: .
①过点作轴的垂线,交直线于点
②在射线上截取,使
③过点作轴的垂线,则垂足即为所求点.
(3)起跑后分钟,两人之间的距离不能超过米.
理由如下:
由题可设
∵两人之间的距离不超过米的时间持续了秒,
∴可设当或时,两人相距为米.
∴相遇前,当时,,即
也即①.
相遇后,当时,
即
也即②.
把①代入②,可得
解得
当两人相遇时,,即
即,解得x=1.
∵甲的速度比乙大,所以,可得
∴起跑后分钟(即秒),两人处于相遇过后,但乙未到达处.
∴两人相距为
∵,
∴两人之间的距离不能超过米.
本题为一次函数图象问题,考查了一次函数图象性质、方程和不等式有关知识,解答关键是根据条件构造方程或不等式解决问题.
17、(1)(1,1)(2)(0,﹣16)(3)
【解析】
(1)根据关联点的定义,结合点的坐标即可得出结论;(2)根据关联点的定义和点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,即可求出M′的坐标;(3)因为点C(﹣1,3),D(4,3),得到y=3,由点N(x,y)和它的“n级关联点”N′都位于线段CD上,可得到方程组,解答即可.
【详解】
(1)∵点A(﹣2,6)的“级关联点”是点A1,
∴A1(﹣2×+6,﹣2+×6),
即A1(5,1).
设点B(x,y),
∵点B的“2级关联点”是B1(3,3),
∴
解得
∴B(1,1).
(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),
M′位于y轴上,
∴﹣3(m﹣1)+2m=0,
解得:m=3
∴m﹣1+(﹣3)×2m=﹣16,
∴M′(0,﹣16).
(3)∵点N(x,y)和它的“n级关联点”N′都位于线段CD上,
∴N′(nx+y,x+ny),
∴ , ,
∴x=3-3n,
∴,解得.
本题考查了一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
18、筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC;证明见解析
【解析】
利用SSS定理证明△ABD≌△CBD,可得∠ABD=∠CBD,∠ADB=∠CDB,从而可写出关于筝形的对角线的一条性质,筝形有一条对角线平分一组对角.
【详解】
解:筝形有一条对角线平分一组对角,即BD平分∠ABC且BD平分∠ADC
证明:∵在△ABD和△CBD中
BA=BC,DA=DC,BD=BD
∴△ABD≌△CBD(SSS)
∴∠ABD=∠CBD,∠ADB=∠CDB
即BD平分∠ABC,且BD平分∠ADC.
本题考查全等三角形的判定及性质,掌握SSS定理及全等三角形对应角相等是本题的解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、640
【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.
【详解】
解:设这个零件的实际长是xcm,根据题意得:
,
解得:x=640,
则这个零件的实际长是640cm.
故答案为:640
此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.
20、
【解析】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理表示出AE的平方,列出方程求解并进一步得到AE的长.
【详解】
设BE=x,则CE=5-x,在Rt△ABE和Rt△ACE中,由勾股定理可得:
所以
解得,
所以AE=.
考点:1.菱形的性质;2.勾股定理.
21、1
【解析】
根据三角形中位线定理得到,,根据平行四边形的性质求出,根据直角三角形的性质计算即可.
【详解】
解:点,分别是边,的中点,
,,
,
,又,
四边形为平行四边形,
,
,点是边的中点,
,
故答案为:1.
本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
22、2s
【解析】
设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
【详解】
如图,设t秒后,四边形APQB为平行四边形,
则AP=t,QC=2t,BQ=6-2t,
∵AD∥BC,
∴AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
∴t=6-2t,
∴t=2,
当t=2时,AP=BQ=2<BC<AD,符合.
综上所述,2秒后四边形ABQP是平行四边形.
故答案为2s.
此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
23、有两个角相等的三角形是等腰三角形
【解析】
根据逆命题的条件和结论分别是原命题的结论和条件写出即可.
【详解】
∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.
故答案为:有两个角相等的三角形是等腰三角形.
本题考查命题与逆命题,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
二、解答题(本大题共3个小题,共30分)
24、(1),(2)
【解析】
(1)直接利用零指数幂,有理数的乘方,二次根式的除法法则计算化简即可;
(2)直接利用平方差公式把方程左边分解因式,进而整理为两个一次因式的乘积,最后解一元一次方程即可;
【详解】
解:(1)原式=,
=,
=,
(2)
或
本题主要考查了实数的运算及利用因式分解法解一元二次方程.熟练相关的运算性质和法则及解方程的方法是解题的关键.
25、甲车的速度是60千米/时,乙车的速度是90千米/时.
【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.
【详解】
设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,
,
解得,x=60,
经检验,x=60是原方程的解.
则x+30=90,
即甲车的速度是60千米/时,乙车的速度是90千米/时.
26、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.
【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.
【详解】
(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,
(120−x)(100+2x)=14000,
整理得x2−70x+1000=0,
解得x1=20,x2=50;
∵为了多销售,增加利润,
∴x=50
答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,
整理得x2−70x+1500=0,
∵△=702−4×1500
相关试卷
这是一份2024年湖北省襄阳市襄州区龙王中学数学九上开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省襄阳市襄州区龙王中学2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了方程等内容,欢迎下载使用。
这是一份湖北省襄阳市襄州区龙王中学2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=的对称轴方程为,若不等式组无解,则的取值范围为,下列事件中,必然事件是等内容,欢迎下载使用。