![2024年湖北武汉一初慧泉中学九上数学开学学业质量监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16206320/0-1727676818151/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北武汉一初慧泉中学九上数学开学学业质量监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16206320/0-1727676818223/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年湖北武汉一初慧泉中学九上数学开学学业质量监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16206320/0-1727676818251/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年湖北武汉一初慧泉中学九上数学开学学业质量监测模拟试题【含答案】
展开
这是一份2024年湖北武汉一初慧泉中学九上数学开学学业质量监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )
A.B.2C.D.3
2、(4分)如图,下面不能判定四边形ABCD是平行四边形的是( )
A.
B.
C.
D.
3、(4分)如图,中,于点,点为的中点,连接,则的周长是( )
A.4+2B.7+C.12D.10
4、(4分)下列各命题是假命题的是( )
A.平行四边形的对角相等B.四条边都相等的四边形是菱形
C.正方形的两条对角线互相垂直D.矩形的两条对角线互相垂直
5、(4分)若点A(–2,)、B( –1,)、C(1,)都在反比例函数(为常数)的图像上,则、、的大小关系为( )
A.B.C.D.
6、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O,AB=3,△ABO的周长比△BOC的周长小1,则▱ABCD的周长是( )
A.10B.12C.14D.16
7、(4分)的计算结果是( )
A.3B.9C.6D.2
8、(4分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16m,则线段AB的长为
A.B.10cmC.20cmD.12cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知若关于x的分式方程有增根,则__________.
10、(4分)已知直线与直线平行且经过点,则______.
11、(4分)如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.
12、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
13、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:
(1)甲、乙两位竞聘者得分的中位数分别是多少
(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)
(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上
15、(8分)如图,矩形的对角线交于点,点是矩形外的一点,其中.
(1)求证:四边形是菱形;
(2)若,连接交于于点,连接,求证:平分.
16、(8分)如图1,在中,,,,以OB为边,在外作等边,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)连接AC,BE交于点P,求AP的长及AP边上的高BH;
(3)在(2)的条件下,将四边形OABC置于如图所示的平面直角坐标系中,以E为坐标原点,其余条件不变,以AP为边向右上方作正方形APMN:
①M点的坐标为 .
②直接写出正方形APMN与四边形OABC重叠部分的面积(图中阴影部分).
17、(10分)某河道A,B两个码头之间有客轮和货轮通行一天,客轮从A码头匀速行驶到B码头,同时货轮从
B码头出发,运送一批建材匀速行驶到A码头两船距B码头的距离千米与行驶时间分之间的函数关系
如图所示请根据图象解决下列问题:
分别求客轮和货轮距B码头的距离千米、千米与分之间的函数关系式;
求点M的坐标,并写出该点坐标表示的实际意义.
18、(10分)已知与成正比例,且时,.
(1)求与的函数关系式;
(2)当时,求的值;
(3)将所得函数图象平移,使它过点(2, -1).求平移后直线的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
20、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.
21、(4分)平行四边形的一个内角平分线将对边分成3和5两个部分,则该平行四边形的周长是_____.
22、(4分)已知a=b﹣2,则代数式的值为_____.
23、(4分)将反比例函数的图像绕着原点O顺时针旋转45°得到新的双曲线图像(如图1所示),直线轴,F为x轴上的一个定点,已知,图像上的任意一点P到F的距离与直线l的距离之比为定值,记为e,即.
(1)如图1,若直线l经过点B(1,0),双曲线的解析式为,且,则F点的坐标为__________.
(2)如图2,若直线l经过点B(1,0), 双曲线的解析式为,且,P为双曲线在第一象限内图像上的动点,连接PF,Q为线段PF上靠近点P的三等分点,连接HQ,在点P运动的过程中,当时,点P的坐标为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:
(1)本次抽测的男生人数为 ,图①中m的值为 ;
(2)求本次抽测的这组数据的平均数、众数和中位数;
(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.
25、(10分)已知实数a,b,c在数轴上的位置如图所示,化简:.
26、(12分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
(1) ①依题意补全图形;②求证:BE⊥AC.
(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.
【详解】
解:∵BN平分∠ABC,BN⊥AE,
∴∠NBA=∠NBE,∠BNA=∠BNE,
在△BNA和△BNE中,
,
∴△BNA≌△BNE,
∴BA=BE,
∴△BAE是等腰三角形,
同理△CAD是等腰三角形,
∴点N是AE中点,点M是AD中点(三线合一),
∴MN是△ADE的中位线,
∵BE+CD=AB+AC=19-BC=19-7=12,
∴DE=BE+CD-BC=5,
∴MN=DE=.
故选C.
本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
2、C
【解析】
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.
【详解】
根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.
故选C.
此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.
3、D
【解析】
根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.
【详解】
∵在△ABC中,AB=AC=6,AE平分∠BAC,
∴BE=CE=BC=4,
又∵D是AB中点,
∴BD=AB=3,
∴DE是△ABC的中位线,
∴DE=AC=3,
∴△BDE的周长为BD+DE+BE=3+3+4=1.
故选:D.
本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.
4、D
【解析】
利于平行四边形的性质、菱形的判定定理、正方形的性质及矩形的性质分别判断后即可确定正确的选项.
【详解】
A. 平行四边形的对角相等,正确,为真命题;
B. 四条边都相等的四边形是菱形,正确,是真命题;
C. 正方形的两条对角线互相垂直,正确,为真命题;
D. 矩形的两条对角线相等但不一定垂直,故错误,为假命题,
故选D.
此题考查命题与定理,解题关键在于掌握各性质定理.
5、C
【解析】
首先根据可得反比例函数的图象在第一、三象限,因此可得在x的范围内,随着x的增大,y在减小,再结合A、B、C点的横坐标即可得到、、的大小关系.
【详解】
解:根据,可得反比例函数的图象在第一、三象限
因此在x的范围内,随着x的增大,y在减小
因为A、B两点的横坐标都小于0,C点的横坐标大于0
因此可得
故选C.
本题主要考查反比例函数的性质,关键在于判断反比例函数的系数是否大于0.
6、C
【解析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长小1,则BC比AB大1,所以可以求出BC,进而求出周长.
【详解】
∵△AOB的周长比△BOC的周长小1,∴BC﹣AB=1.
∵AB=3,∴BC=4,∴AB+BC=7,∴平行四边形的周长为2.
故选C.
本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.
7、A
【解析】
求出的结果,即可选出答案.
【详解】
解:=3,
故选:A.
本题考查了二次根式的性质的应用,注意:.
8、B
【解析】
作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS推出BC=CD得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.
【详解】
作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形等宽,
∴AR=AS,
∵AR•BC=AS•CD,
∴BC=CD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,
在Rt△AOB中,∵OA= AC=6cm,OB=BD=8cm,
∴AB= =10(cm),
故选:B.
本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x-2),得
1+(x-2)=k
∵原方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得k=1.
故答案为1.
增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
10、1
【解析】
根据平行直线的解析式的k值相等可得k=-1,再将经过的点的坐标代入求解即可.
【详解】
解:∵直线与直线平行,
∴k=-1.
∴直线的解析式为.
∵直线经过点(1,1),
∴b=4.
∴k+b=1.
本题考查了两直线平行问题,主要利用了两平行直线的解析式的k值相等,需熟记.
11、1
【解析】
先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC=4,DC=AB=6,DC//AB,
∴∠EAB=∠AED,
∵∠EAB=∠DAE,
∴∠DAE=∠DEA,
∴DE=AD=4,
∴CE=CD-DE=6-4=2,
∵点F、G分别是BE、BC的中点,
∴FG=EC=1,
故答案为1.
本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.
12、3或1
【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.
【详解】
解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4
当y=0时,x=-2
∴点A(-2,0),点B(0,4)
如图:过点P作PE⊥x轴,交线段AB于点E
∴点E横坐标为-1,
∴y=-2+4=2
∴点E(-1,2)
∴|m-2|=1
∴m=3或1
故答案为:3或1
本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.
13、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
三、解答题(本大题共5个小题,共48分)
14、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分: 91(分),
乙平均得分: 91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.
【解析】
(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,
(2)根据算术平均数的计算方法求平均数即可,
(3)根据加权平均数的求法设出权数,列不等式解答即可.
【详解】
(1)甲得分:87 87 89 92 93 94 95,中位数为:92(分),
乙得分:87 89 89 91 94 95 96,中位数为:91(分);
(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),
乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),
从平均得分看应该录用乙;
(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,
(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)
即:276x+361-361x≥267x+374-374x
解得: x≥≈0.6
所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。
考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.
15、(1)见解析;(2)见解析.
【解析】
(1)由矩形可知OA=OB,由AE∥BD,BE∥AC,即可得出结论;
(2)利用矩形和菱形的性质先证△COF≌△EBF,得到OF=BF,再求得∠AOB=60°,利用有一个角是60°的等腰三角形是等边三角形,得到△AOB为等边三角形,最后利用三线合一的性质得到AF平分∠BAO.
【详解】
证明:(1)∵四边形是矩形,
∴则,
即∴
又∵,
∴四边形是平行四边形,
∴四边形是菱形;
(2)∵四边形是菱形,
∴,
∴,
∵四边形是矩形,
∴,
∴,
在和中
∴,
∴,
∵,
∴,
∴,
∵,
∴是等边三角形,
∵,
∴平分.
本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定,三线合一的性质.
16、(1)见解析;(2),;(3)①;②
【解析】
(1)利用直角三角形斜边中线的性质可得DO=DA,推出∠AEO=60°,进一步得出BC∥AE,CO∥AB,可得结论;
(2)先计算出OA=,推出PB=,利用勾股定理求出AP=,再利用面积法计算BH即可;
(3)①求出直线PM的解析式为y=x-3,再利用两点间的距离公式计算即可;
②易得直线BC的解析式为y=x+4,联立直线BC和直线PM的解析式成方程组,求得点G的坐标,再利用三角形面积公式计算.
【详解】
(1)证明:∵Rt△OAB中,D为OB的中点,
∴AD=OB,OD=BD=OB,
∴DO=DA,
∴∠DAO=∠DOA=30°,∠EOA=90°,
∴∠AEO=60°,
又∵△OBC为等边三角形,
∴∠BCO=∠AEO=60°,
∴BC∥AE,
∵∠BAO=∠COA=90°,
∴CO∥AB,
∴四边形ABCE是平行四边形;
(2)解:在Rt△AOB中,∠AOB=30°,OB=8,
∴AB=4,
∴OA=,
∵四边形ABCE是平行四边形,
∴PB=PE,PC=PA,
∴PB=,
∴
∴,
即
∴;
(3)①∵C(0,4),
设直线AC的解析式为y=kx+4,
∵P(,0),
∴0=k+4,
解得,k=,
∴y=x+4,
∵∠APM=90°,
∴直线PM的解析式为y=x+m,
∵P(,0),
∴0=×+m,
解得,m=-3,
∴直线PM的解析式为y=x-3,
设M(x,x-3),
∵AP=,
∴(x-)2+(x-3)2=()2,
化简得,x2-4x-4=0,
解得,x1=,x2=(不合题意舍去),
当x=时,y=×()-3=,
∴M(,),
故答案为:(,);
②∵
∴直线BC的解析式为:,
联立,解得,
∴,
本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.
17、 (1) , ;(2) 两船同时出发经24分钟相遇,此时距B码头8千米.
【解析】
(1)设y1=k1x+b,把(0,40),(30,0)代入得到方程组即可;设y2=k2x,把(120,40)代入即可解答;
(2)联立y1,y2得到方程组,求出方程组的解,即可求出M点的坐标.
【详解】
解:设,
把,代入得:,
解得:,
,
设,
把代入得:,
解得:,
;
联立与得:,
解得:,
点M的坐标为,
它的实际意义是:两船同时出发经24分钟相遇,此时距B码头8千米.
本题考查了一次函数的应用,解决本题的关键是用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.
18、(1)y=2x+3;(2)2;(3)y=2x-5.
【解析】
(1)根据题意设y与x的关系式为y-3=kx(k≠0);然后利用待定系数法求一次函数解析式;
(2)把x=-代入一次函数解析式可求得
(3)设平移后直线的解析式为y=2x+m,把点(2, -1)代入求出m的值,即可求出平移后直线的解析式
【详解】
(1)设y-3=kx,则
2k=7-3,解得:k=2,
y与x的函数关系式:y=2x+3;
(2)当x=-时, y=2
(3)设平移后直线的解析式为:y=2x+m,过点(2,﹣1)
所以,4+m=-1,得:m=-5,
解析式为:y=2x-5
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5.
【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
【详解】
证明:∵BD为∠ABC的平分线,
∴∠EBD=∠CBD,
又∵EF∥BC,
∴∠EDB=∠CBD,
∴∠EBD=∠EDB,
∴EB=ED,
同理FC=FD,
又∵EF=ED+DF,
∴EF=EB+FC=5.
此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
20、AB=CD(答案不唯一)
【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.
【详解】
解:添加条件为:AB=CD(答案不唯一);理由如下:
∵AB∥DC,AB=CD,
∴四边形ABCD是平行四边形,
∴AD=BC.
故答案为AB=CD(答案不唯一).
本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.
21、22或1.
【解析】
根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,可以求解.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE为角平分线,
∴∠DAE=∠BAE,
∴∠AEB=∠BAE,
∴AB=BE,
∴①当BE=3时,CE=5,AB=3,
则周长为22;
②当BE=5时,CE=3,AB=5,
则周长为1,
故答案为:22或1.
本题考查了平行四边形的性质,结合了等腰三角形的判定.注意有两种情况,要进行分类讨论.
22、1
【解析】
由已知等式得出,代入到原式计算可得答案.
【详解】
解:,
故答案为:1.
本题主要考查了完全平方的运算,其中熟练掌握完全平方公式是解题的关键.
23、F(4,0)
【解析】
(1)令y=0求出x的值,结合e=2可得出点A的坐标,由点B的坐标及e=2可求出AF的长度,将其代入OF=OB+AB+AF中即可求出点F的坐标;
(2)设点P的坐标为(x,),则点H的坐标为(1,),由Q为线段PF上靠近点P的三等分点,可得出点Q的坐标为(x+,),利用两点间的距离公式列方程解答即可;
【详解】
解:(1)如图:
当y=0时,±,
解得:x1=2,x2=-2(舍去),
∴点A的坐标为(2,0).
∵点B的坐标为(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F点的坐标为(4,0).
故答案为:(4,0).
(2)设点P的坐标为(x,),则点H的坐标为(1,).
∵点Q为线段PF上靠近点P的三等分点,点F的坐标为(5,0),
∴点Q的坐标为(x+,).
∵点H的坐标为(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化简得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴点P的坐标为(,).
故答案为:(,).
本题考查了两点间的距离、解一元二次方程以及反比例函数的综合应用,解题的关键是:(1)利用特殊值法(点A和点P重合),求出点F的坐标;(2)设出点P的坐标,利用两点间的距离公式找出关于x的一元二次方程;
二、解答题(本大题共3个小题,共30分)
24、(1)50、1;(2)平均数为5.16次,众数为5次,中位数为5次;(3)估计该校350名九年级男生中有2人体能达标.
【解析】
分析:(Ⅰ)根据4次的人数及其百分比可得总人数,用6次的人数除以总人数求得m即可;
(Ⅱ)根据平均数、众数、中位数的定义求解可得;
(Ⅲ)总人数乘以样本中5、6、7次人数之和占被调查人数的比例可得.
详解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=1%,所以m=1.
故答案为50、1;
(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;
(Ⅲ)×350=2.
答:估计该校350名九年级男生中有2人体能达标.
点睛:本题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
25、
【解析】
直接利用数轴判断得出:a
相关试卷
这是一份2024年广东省中学山市中学山纪念中学数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省会师中学九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省武汉市武汉一初慧泉中学2023-2024学年九上数学期末经典模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,已知一组数据等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)