终身会员
搜索
    上传资料 赚现金

    2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】

    立即下载
    加入资料篮
    2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】第1页
    2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】第2页
    2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】

    展开

    这是一份2024年湖南省武冈市第三中学数学九上开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为( )
    A.20B.21C.14D.7
    2、(4分)如图,已知四边形ABCD为菱形,AD=5cm,BD=6cm,则此菱形的面积为( )
    A.12cm2B.24cm2C.48cm2D.96cm2
    3、(4分)等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是( )
    ①OD=OE;②;③;④△BDE的周长最小值为9.
    A.1个B.2个C.3个D.4个
    4、(4分)大肠杆菌的长度平均约为0.0000014米,把这个数用科学记数表示正确的是( )米.
    A.1.4×106B.1.4×10﹣5C.14×10﹣7D.1.4×10﹣6
    5、(4分)下列选项中的计算,正确的是( )
    A.=±3B.2-=2C.=-5D.
    6、(4分)已知(x﹣1)|x|﹣1有意义且恒等于1,则x的值为( )
    A.﹣1或2B.1C.±1D.0
    7、(4分)已知点A的坐标为(3,﹣6),则点A所在的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    8、(4分)如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
    A.线段ECB.线段AEC.线段EFD.线段BF
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若点在轴上,则点的坐标为__________.
    10、(4分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为_____.
    11、(4分)化简:=_____.
    12、(4分)若函数的图象经过A(1,)、B(-1,)、C(-2,)三点,则,,的大小关系是__________________.
    13、(4分)分解因式_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;
    (1)求证:△ABE≌△CDF;
    (2)判断四边形ENFM的形状,并说明理由.
    15、(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.
    (1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;
    (2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.
    16、(8分)如图,在平行四边形ABCD中,点E是对角线AC上一点,连接BE并延长至F,使EF=BE.
    求证:DF∥AC.
    17、(10分)中国古代有着辉煌的数学成就,《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》等是我国古代数学的重要文献.
    (1)小聪想从这4部数学名著中随机选择1部阅读,求他选中《九章算术》的概率;
    (2)小聪拟从这4部数学名著中选择2部作为假课外拓展学习内容,用列表或树状图求选中的名著恰好是《九章算术》和《周牌算经》的概率.
    18、(10分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
    (1)求与的函数表达式;
    (2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算的结果是_____。
    20、(4分)分解因式:_____.
    21、(4分)分解因式:5x3﹣10x2=_______.
    22、(4分)若个数,,,的中位数为,则_______.
    23、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,
    AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积
    等于___(结果保留根号).
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.
    25、(10分)如图,直线y=x+1与x,y轴交于点A,B,直线y=-2x+4与x,y轴交于点D,C,这两条直线交于点E.
    (1)求E点坐标;
    (2)若P为直线CD上一点,当△ADP的面积为9时,求P的坐标.
    26、(12分)甲、乙两家旅行社为了吸引更多的顾客,分别推出赴某地旅游的团体(多于4人)优惠办法.甲旅行社的优惠办法是:买4张全票,其余人按半价优惠;乙旅行社的优惠办法是:所有人都打七五折优惠.已知这两家旅行社的原价均为每人1000元,那么随着团体人数的变化,哪家旅行社的收费更优惠.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.
    【详解】
    解:当点E在AB段运动时,
    y=BC×BE=BC•x,为一次函数,由图2知,AB=3,
    当点E在AD上运动时,
    y=×AB×BC,为常数,由图2知,AD=4,
    故矩形的周长为7×2=14,
    故选:C.
    本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.
    2、B
    【解析】
    设AC交BD于O.根据勾股定理求出OA,再根据菱形的面积公式计算即可.
    【详解】
    设AC交BD于O.
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,
    ∵AD=5cm,OD=OB=BD=3cm,
    ∴OA==4,
    ∴AC=2OA=8,
    ∴S菱形ABCD=×AC×BD=24,
    故选B.
    本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    3、B
    【解析】
    连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用 得到四边形ODBE的面积 ,则可对进行③判断;作OH⊥DE,如图,则DH=EH,计算出=,利用面积随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.
    【详解】
    解:连接OB、OC,如图,
    ∵△ABC为等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∵点0是△ABC的中心,
    ∴OB=OC,OB、OC分别平分∠ABC和∠ACB,
    ∴∠ABO=∠0BC=∠OCB=30°
    ∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,
    ∴∠BOD=∠COE,
    在△BOD和△COE中

    ∴△BOD2≌△COE,
    ∴BD=CE,OD=OE,所以①正确;
    ∴,
    ∴四边形ODBE的面积 ,所以③错误;
    作OH⊥DE,如图,则DH=EH,
    ∵∠DOE=120°,
    ∴∠ODE=∠OEH=30°,
    即S△ODE随OE的变化而变化,
    而四边形ODBE的面积为定值,
    所以②错误;
    ∵BD=CE,
    ∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,
    .△BDE周长的最小值=6+3=9,所以④正确.
    故选:B.
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.
    4、D
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为(为整数),与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:D.
    本题主要考查了科学记数法的表示,熟练掌握相关表示方法是解决本题的关键.
    5、D
    【解析】
    根据算术平方根的定义,开方运算是求算术平方根,结果是非负数,同类根式相加减, 把同类二次根式的系数相加减, 做为结果的系数, 根号及根号内部都不变.
    【详解】
    解:A、,不符合题意;
    B、,不符合题意;
    C、,不符合题意;
    D、,符合题意.
    故答案为:D
    本题考查了算术平方根的计算、二次根式的计算,熟练掌握数的开方、同类二次根式的合并及二次根式商的性质是解题的关键.
    6、A
    【解析】
    根据任何非3数的3次幂等于1,求x的值,注意1的任何正整数次幂也是1.
    【详解】
    根据题意,得x-1≠3,|x|-1=3.
    ∵|x|-1=3,∴x=±1,
    ∵x-1≠3,∴x≠1,
    又当x=3时,(x-1)|x|-1=1,
    综上可知,x的值是-1或3.
    故选A.
    此题考查了绝对值的定义,零指数幂的定义,比较简单.
    7、D
    【解析】
    在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
    【详解】
    横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.
    此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.
    8、B
    【解析】
    分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.
    详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,
    ∵∠A=60°,∠AEF=30°,
    ∴∠AFD=90°,
    在Rt△ADF中,∵AD=2,
    ∴AF=AD=1,EF=DF=ADcs∠ADF=,
    ∴BF=AB-AF=1,结合图象可知C、D错误;
    当点E与点C重合时,即x=2时,
    如图,连接BD交AC于H,
    此时EC=0,故A错误;
    ∵四边形ABCD是菱形,∠BAD=60°,
    ∴∠DAC=30°,
    ∴AE=2AH=2ADcs∠DAC=2×2×=2,故B正确.
    故选:B.
    点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    根据x轴上点的纵坐标等于1,可得m值,根据有理数的加法,可得点P的坐标.
    【详解】
    解:因为点P(m+1,m-2)在x轴上,
    所以m-2=1,解得m=2,
    当m=2时,点P的坐标为(3,1),
    故答案为(3,1).
    本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为1,y轴上的横坐标为1.
    10、
    【解析】
    如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
    ∵四边形OABC是菱形,
    ∴AC⊥OB,GC=AG,OG=BG=2,A. C关于直线OB对称,
    ∴PC+PD=PA+PD=DA,
    ∴此时PC+PD最短,
    在RT△AOG中,AG=,
    ∴AC=2,
    ∵OA⋅BK=⋅AC⋅OB,
    ∴BK=4,AK==3,
    ∴点B坐标(8,4),
    ∴直线OB解析式为y=x,直线AD解析式为y=−x+1,
    由,解得,
    ∴点P坐标(,).
    故答案为:(,).
    点睛:本题考查了菱形的性质、轴对称-最短路径问题、坐标与图象的性质等知识,解题的关键是正确找到点P的位置,构建一次函数,列出方程组求交点坐标,属于中考常考题型.
    11、-6
    【解析】
    根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
    【详解】
    ,
    故答案为-6
    12、<<
    【解析】
    分别计算自变量为1,-1,-2对应的函数值即可得到,,的大小关系.
    【详解】
    解:当x=1时,=-2×1=-2;
    当x=-1时,=-2×(-1)=2;
    当x=-2时,=-2×(-2)=4;
    ∵-2<2<4
    ∴<<
    故答案为:<<.
    本题考查了正比例函数图象上点的坐标特征:正比例函数图象上点的坐标满足其解析式.
    13、
    【解析】
    提取公因数4,再根据平方差公式求解即可.
    【详解】
    故答案为:
    本题考查了因式分解的问题,掌握平方差公式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)四边形ENFM是矩形.见解析.
    【解析】
    (1)根据SAS即可证明;
    (2)只要证明三个角是直角即可解决问题;
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD
    ∴∠ABD=∠CDB,又∵BE=DF,
    ∴△ABE≌△CDF(SAS).
    (2)由(1)得,∴∠AEB=∠CFD,
    ∴∠AED=∠CFB,
    ∴AE∥CF
    又∵EN⊥CF,∠AEN=∠ENF=90°,
    又∵FM⊥AE,∠FME=90°,
    ∴四边形ENFM是矩形.
    本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    15、画图见解析.
    【解析】
    【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;
    (2)结合网格特点以及中心对称图形的定义按要求作图即可得.
    【详解】(1)如图所示(答案不唯一);
    (2)如图所示(答案不唯一).
    【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.
    16、见解析;
    【解析】
    连接BD交AC于点O,根据平行四边形的性质证明即可.
    【详解】
    连接BD交AC于点O.
    ∵四边形ABCD是平行四边形,∴BO=OD,而BE=EF,∴OE∥DF,即AC∥EF.
    本题考查了平行四边形的性质,关键是根据平行四边形的性质和三角形中位线定理解答.
    17、(1);(2).
    【解析】
    (1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
    (2)拟使用列表法求解,见解析.
    【详解】
    解:(1)小聪想从这4部数学名著中随机选择1部阅读,他选中《九章算术》的概率为;
    (2)将四部名著《周牌算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《周牌算经》为事件M,用列表法列举出从4部名著中选择2部所能产生的全部结果:
    由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即AB,BA,
    ∴P(M)= .
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1),;(2)该镜片的焦距为.
    【解析】
    (1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
    (2)在解析式中,令y=500,求出x的值即可.
    【详解】
    (1)根据题意,设与的函数表达式为
    把,代入中,得
    ∴与的函数表达式为.
    (2)当时,
    答:该镜片的焦距为.
    考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据运算顺序,先对括号里进行通分,给a的分子分母都乘以a,然后利用分式的减法法则,分母不变,只把分子相减,进而除法法则,除以一个数等于乘以这个数的倒数,并把a2-1分解因式,约分即可得到化简结果.
    【详解】
    解:
    故答案为:
    此题考查学生灵活运用通分、约分的方法进行分式的加减及乘除运算,是一道基础题.注意运算的结果必须是最简分式.
    20、
    【解析】
    直接提取公因式a即可得答案.
    【详解】
    3a2+a=a(3a+1),
    故答案为:a(3a+1)
    本题考查提取公因式法分解因式,正确找出公因式是解题关键.
    21、5x2(x-2)
    【解析】
    5x3-10x2=2x2(x-2)
    22、
    【解析】
    根据中位数的概念求解.
    【详解】
    解:∵5,x,8,10的中位数为7,
    ∴,
    解得:x=1.
    故答案为:1.
    本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    23、3-
    【解析】
    根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.
    【详解】
    解:作CM⊥AB于M,
    ∵等边△ABC的面积是4,
    ∴设BM=x,∴tan∠BCM=,
    ∴BM=CM,
    ∴×CM×AB=×2×CM2=4,
    ∴CM=2,BM=2,
    ∴AB=4,AD=AB=2,
    在△EAD中,作HF⊥AE交AE于H,
    则∠AFH=45°,∠EFH=30°,
    ∴AH=HF,
    设AH=HF=x,则EH=xtan30°=x.
    又∵AH+EH=AE=AD=2,
    ∴x+x=2,
    解得x=3-.
    ∴S△AEF=×2×(3-)=3-.
    故答案为3-
    二、解答题(本大题共3个小题,共30分)
    24、四边形的周长为8.
    【解析】
    根据、分别为的边、的中点,且证明四边形是平行四边形,再证明平行四边形是菱形即可求解.
    【详解】
    解:∵、分别为的边、的中点,
    ∴.
    又∵,
    ∴四边形是平行四边形.
    又∵,
    ∴平行四边形是菱形.

    ∴,
    ∴四边形的周长为8.
    本题考查了平行四边形及菱形的判定和性质,证明四边形是菱形是解本题的关键.
    25、(1)点E的坐标为(1,2);(2)点 P的坐标为(-1,6)或(5,-6).
    【解析】
    (1)把y=x+1与y=-2x+4联立组成方程组,解方程组求得x、y的值,即可求得点E的坐标;(2)先求得点A的坐标为(-1,0)、点D的坐标为(2,0),可得AD=3,根据△ADP的面积为9求得△ADP边AD上的高为6,可得点P的纵坐标为6,再分当点P在y轴的上方时和当点P在y轴的下方时两种情况求点P的坐标即可.
    【详解】
    (1)由题意得,,
    解得,,
    ∴点E的坐标为(1,2);
    (2)∵直线y=x+1与x交于点A,直线y=-2x+4与x交于点D,
    ∴A(-1,0),D(2,0),
    ∴AD=3,
    ∵△ADP的面积为9,
    ∴△ADP边AD上的高为6,
    ∴点P的纵坐标为6,
    当点P在y轴的上方时,-2x+4=6,
    解得x=-1,
    ∴P(-1,6);
    当点P在y轴的下方时,-2x+4=-6,
    解得x=5,
    ∴P(5,-6);
    综上,当△ADP的面积为9时,点 P的坐标为(-1,6)或(5,-6).
    本题考查了两直线的交点问题,熟知两条直线的交点坐标是这两条直线相对应的一次函数表达式所组成的二元一次方程组的解是解决问题的关键.
    26、当团体人数超过8人时,选甲旅行社收费更优惠;当团体人数为8人时,两家旅行社收费相同;当团体人数少于8人时,选乙旅行社收费更优惠.
    【解析】
    设团体有x人,收费y元,得出y甲=4000+500(x-4)=500x+2000,y乙=750x,再分情况列不等式和方程求解可得.
    【详解】
    设团体有人,收费元
    ∴,
    ∵当时,,解得;
    ∴当时,,解得;
    当时,,解得;
    ∴当团体人数超过8人时,选甲旅行社收费更优惠;
    当团体人数为8人时,两家旅行社收费相同;
    当团体人数少于8人时,选乙旅行社收费更优惠.
    本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的相等关系与不等关系.
    题号





    总分
    得分
    眼镜片度数(度)

    镜片焦距(厘米)

    第1部
    第2部
    A
    B
    C
    D
    A
    BA
    CA
    DA
    B
    AB
    CB
    DB
    C
    AC
    BC
    DC
    D
    AD
    BD
    CD

    相关试卷

    2024年湖北省襄阳市第三十四中学数学九上开学检测模拟试题【含答案】:

    这是一份2024年湖北省襄阳市第三十四中学数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】:

    这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年北京市月坛中学数学九上开学复习检测试题【含答案】:

    这是一份2024年北京市月坛中学数学九上开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map