2024年湖南省长沙市明德麓谷学校九上数学开学联考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为,,,,则射击成续最稳定的是( )
A.甲B.乙C.丙D.丁
2、(4分)若式子有意义,则一次函数的图象可能是( )
A.B.C.D.
3、(4分)如图,在矩形中,,,为上的一点,设,则的面积与之间的函数关系式是
A.B.C.D.
4、(4分)使等式成立的x的值是( )
A.是正数B.是负数C.是0D.不能确定
5、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为( )
A.B.4C.D.
6、(4分)下列说法不正确的是( )
A.四边都相等的四边形是平行四边形
B.两组对角分别相等的四边形是平行四边形
C.对角线互相垂直的四边形是平行四边形
D.两组对边分别平行的四边形是平行四边形
7、(4分)将抛物线向左平移2个单位后,得到的抛物线的解析式是( ).
A.B.C.D.
8、(4分)如图,在中,,,分别以AC,BC为边向外作正方形,两个正方形的面积分别记为,,则等于( )
A.30B.150C.200D.225
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=1.则GH的长为__________.
10、(4分)如图,▱ABCD中,,,垂足为点若,则的度数为______.
11、(4分)若二次根式有意义,则的取值范围是______________.
12、(4分)如图,在平行四边形纸片ABCD中,AB=3,将纸片沿对角线AC对折,BC边与AD边交于点E,此时,△CDE恰为等边三角形,则图中重叠部分的面积为_____.
13、(4分)命题“对角线相等的四边形是矩形”的逆命题是_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解方程:(用公式法解).
15、(8分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=.
16、(8分)如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,同时点Q从点B开始沿BC向点C以2cm/s的速度移动.当一个点到达终点时另一点也随之停止运动,运动时间为x秒(x>0).
(1)求几秒后,PQ的长度等于5 cm.
(2)运动过程中,△PQB的面积能否等于8 cm2?并说明理由.
17、(10分)已知关于的一元二次方程,
(1) 求证:无论m为何值,方程总有两个不相等的实数根;
(2) 当m为何值时,该方程两个根的倒数之和等于1.
18、(10分)如图,在网格图中,平移使点平移到点,每小格代表1个单位。
(1)画出平移后的;
(2)求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点在直线上,则=__________.
20、(4分)设是满足不等式的正整数,且关于的二次方程的两根都是正整数,则正整数的个数为_______.
21、(4分)最简二次根式与是同类二次根式,则=______.
22、(4分)如图,在中,,交于点,,若,则__________.
23、(4分)甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同,但甲的成绩比乙的成绩稳定,那么两者的方差的大小关系是___________ . (填“>”,“<”或“=”)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,的顶点坐标分别为,.
(1)画出关于点的中心对称图形;
(2)画出绕原点逆时针旋转的,直接写出点的坐标
(3)若内一点绕原点逆时针旋转的上对应点为,请写出的坐标.(用含,的式子表示).
25、(10分)化简求值:,其中m=﹣1.
26、(12分)某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.
(1)求抽取员工总人数,并将图补充完整;
(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;
(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.
【详解】
解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,
∴丁的方差最小,成绩最稳定,
故选:D.
本题考查方差的意义,记住方差越小数据越稳定.
2、A
【解析】
试题分析:当时,式子有意义,所以k>1,所以1-k<0,所以一次函数的图象过第一三四象限,故选A.
考点:1.代数式有意义的条件;2.一次函数图像的性质.
3、D
【解析】
先根据矩形的性质得出∠B=90°.由BC=2,BP=x,得出PC=BC-BP=2-x,再根据△APC的面积,即可求出△APC的面积S与x之间的函数关系式.
【详解】
解:四边形是矩形,
.
,为上的一点,,
,
,
的面积,
即.
故选:.
本题考查了根据实际问题列一次函数关系式,矩形的性质,三角形的面积,难度一般.
4、C
【解析】
根据二次根式有意义的条件:被开方数大于等于0即可得出答案.
【详解】
根据题意有
解得 ,
故选:C.
本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
5、D
【解析】
如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。
【详解】
解:如图作于.
∵是等腰直角三角形,,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,AH=AP+PH=1+2=3,
在中,,
∵,,
∴,
∴,
∴,
故选:D.
本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.
6、C
【解析】
由平行四边形的判定可求解.
【详解】
解:A、四边都相等是四边形是菱形,也是平行四边形;故该选项不合题意;
B、两组对角分别相等的四边形是平行四边形,故该选项不合题意;
C、对角线互相垂直的四边形不是平行四边形,故该选项符合题意;
D、两组对边分别平行的四边形是平行四边形,故该选项不合题意;
故选:C.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.
7、A
【解析】
根据二次函数平移规律,即可得到答案.
【详解】
解:由“左加右减”可知,抛物线向左平移2个单位后,得到的抛物线的解析式是,
故选A.
本题主要考查抛物线图像的平移,掌握函数图象的平移规则,“左加右减,上加下减”是解题的关键.
8、D
【解析】
在直角三角形ABC中,利用勾股定理求出 的值,根据S1,S2分别表示正方形面积,求出S1+S2的值即可.
【详解】
解:如图
∵在Rt△ABC中,∠ACB=90°,AB=15,
∴由勾股定理得:AC2+BC2=AB2=225,
则S1+S2=AC2+BC2=225,
故选:D.
此题考查了勾股定理,以及正方形的性质,熟练掌握勾股定理是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P,根据正方形的性质可得,再根据同角的余角相等可得,然后利用“角边角”证明,根据全等三角形对应边相等可得,然后代入数据即可得解.
【详解】
如图,过点F作于M,过点G作于N,设 GN、EF交点为P
∵四边形ABCD是正方形
∴
∴
∵
∴
∴
在△EFM和△HGN中
∴
∴
∵
∴
即GH的长为1
故答案为:1.
本题考查了矩形的线段长问题,掌握正方形的性质、全等三角形的性质以及判定定理是解题的关键.
10、25°
【解析】
由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.
【详解】
因为,,
所以,∠ACB=∠B=
因为,四边形ABCD是平行四边形,
所以,AD∥BC,
所以,∠DAE=∠ACB=65〬,
又因为,,
所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.
故答案为25〬
本题考核知识点:平行四边形,等腰三角形,垂直定义. 解题关键点:由所求推出必知,逐步解决问题.
11、
【解析】
根据二次根式的意义,被开方数是非负数求解即可.
【详解】
根据题意得:
解得,
故答案为:.
本题主要考查学生对二次根式有意义时被开方数的取值的掌握,熟知二次根式有意义的条件是解题的关键.
12、.
【解析】
根据翻折的性质,及已知的角度,可得△AEB’为等边三角形,再由四边形ABCD为平行四边形,且∠B=60°,从而知道B’,A,B三点在同一条直线上,再由AC是对称轴,所以AC垂直且平分BB’,AB=AB’=AE=3,求AE边上的高,从而得到面积.
【详解】
解:∵△CDE恰为等边三角形,
∴∠AEB’=∠DEC=60°,∠D=∠B=∠B’=60°,
∴△AEB’为等边三角形,
由四边形ABCD为平行四边形,且∠B=60°,
∴∠BAD=120°,所以所以∠B’AE+∠DAB=180°,
∴B’,A,B三点在同一条直线上,
∴AC是对折线,
∴AC垂直且平分BB’,
∴AB=AB’=AE=3,AE边上的高,h=CD×sin60°=,
∴面积为.
本题有一个难点,题目并没有说明B’,A,B三点在同一条直线上,虽然图形是一条直线,易当作已知条件,这一点需注意.
13、矩形的对角线相等
【解析】
根据逆命题的定义:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,原命题的条件是对角线相等,结论是矩形,互换即可得解.
【详解】
原命题的条件是:对角线相等的四边形,结论是:矩形;
则逆命题为矩形的对角线相等.
此题主要考查对逆命题的理解,熟练掌握,即可解题.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先求出b2-4ac的值,再代入公式求出即可.
【详解】
解:3x2-4x+2=0,
∵a=3,b=-4,c=2,
∴△=b2-4ac=(-4)2-4×3×2=24,
∴x==,
则.
本题考查了解一元二次方程—公式法.熟记公式x=是解题的关键.
15、原式=﹣3x1+4,当x=时,原式=﹣1.
【解析】
试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.
试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,
当x=时,原式=﹣6+4=﹣1.
考点:整式的化简求值.
16、 (1)1秒后PQ的长度等于5 cm;(1)△PQB的面积不能等于8 cm1.
【解析】
(1)根据PQ=5,利用勾股定理BP1+BQ1=PQ1,求出即可;
(1)通过判定得到的方程的根的判别式即可判定能否达到8cm1.
【详解】
解:(1)根据题意,得BP=(5-x),BQ=1x.
当PQ=5时,在Rt△PBQ中,BP1+BQ1=PQ1,
∴(5-x)1+(1x)1=51,
5x1-10x=0,
5x(x-1)=0,
x1=0(舍去),x1=1,
答:1秒后PQ的长度等于5 cm.
(1)设经过x秒以后,△PBQ面积为8,
×(5-x)×1x=8.
整理得x1-5x+8=0,
Δ=15-31=-7<0,
∴△PQB的面积不能等于8 cm1.
此题主要考查了一元二次方程的应用,解题的关键是找到等量关系,列出方程并解答.
17、(2)见解析 (2)
【解析】
(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;
(2)利用根与系数的关系列式求得m的值即可.
【详解】
证明:△=(m+2)2-4×2×(m-2)=m2+2.
∵m2≥0,
∴m2+2>0,即△>0,
∴方程总有两个不相等的实数根.
(2)设方程的两根为a、b,
利用根与系数的关系得:a+b=-m-2,ab=m-2
根据题意得:=2,
即:=2
解得:m=-,
∴当m=-时该方程两个根的倒数之和等于2.
本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.
18、(1)详见解析;(2)
【解析】
(1)根据题意知:A到D是相右平移6个方格,相下平移2个方格,即可画出C、B的对应点,连接即可;
(2)化为正方形减去3个三角形即可.
【详解】
(1)如图所示:△DEF即为所求;
(2)
本题主要考查对平移的性质,作图-平移变换等知识点的理解和掌握,能根据题意正确画出图形是解此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把代入解析式,解方程即可.
【详解】
将点代入直线的解析式,得4=3a+2,
∴.a=
故本题应填写:.
本题考查了点在函数图像上,掌握函数解析式的基本性质是解题的关键.
20、1个.
【解析】
首先把方程进行整理,根据方程有两个正整数根,说明根的判别式△=b2−4ac≥0,由此可以求出m的取值范围,表达出两根,然后根据方程有两个正整数根以及m的取值范围得出m为完全平方数即可.
【详解】
解:将方程整理得:x2−(2m+4)x+m2+4=0,
∴,
,
∵两根都是正整数,且是满足不等式的正整数,
∴m为完全平方数即可,
∴m=1,4,9,16,25,36,49,共1个,
故答案为:1.
此题主要考查了含字母系数的一元二次方程,确定m为完全平方数是解决本题的关键.
21、4
【解析】
由于与是最简二次根式,故只需根式中的代数式相等即可确定的值.
【详解】
由最简二次根式与是同类二次根式,可得
3a-1=11
解得
a=4
故答案为:4.
本题主要考察的是同类二次根式的定义:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.
22、1
【解析】
利用角平线性质和已知条件求得两三角形全等,求得EC=ED,从而解得.
【详解】
题目可知BC=BD,
∠ECB=∠EDB=90°,
EB=EB,
∴△ECB≌△EDB(HL),
∴EC=ED,
∴AE+DE=AE+EC=AC=1.
故答案为:1.
此题考查角平分线运用性质的应用,全等三角形的判定与性质,解题关键在于掌握判定定理.
23、<
【解析】
根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:∵甲的成绩比乙的成绩稳定,
∴S2甲<S2乙,
故答案为:<.
本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2),见解析;(3).
【解析】
(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;
(3)利用(2)中对应点的规律写出Q的坐标.
【详解】
解:(1)如图,为所作;
(2)如图,为所作,点的坐标为;
(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为.
故答案为:(1)见解析;(2),见解析;(3).
本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
25、m﹣3,-2.
【解析】
直接将括号里面进行加减运算,再利用分式的混合运算法则计算得出答案.
【详解】
==m﹣3,
把m=﹣1代入得,原式=﹣1﹣3=﹣2.
此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.
26、(1)见解析(2)8万元,8万元,8.12万元(3)384人
【解析】
试题分析:(1)根据扇形中各部分所占的百分比的和是1,即可求得3万元的员工所占的百分比,然后根据百分比的意义求得直方图中缺少部分的人数;
(2)根据众数、中位数以及平均数的定义求解;
(3)利用总数1200乘以对应的比例即可求解.
【详解】
试题解析:(1)3万元的员工的百分比为:1﹣36%﹣20%﹣12%﹣24%=8%,
抽取员工总数为:4÷8%=50(人)
5万元的员工人数为:50×24%=12(人)
8万元的员工人数为:50×36%=18(人)
(2)每人所创年利润的众数是 8万元,每人所创年利润的中位数是8万元,
平均数是:(3×4+5×12+8×18+10×10+15×6)=8.12万元.
故答案为8万元,8万元,8.12万元.
(3)1200×=384(人).
答:在公司1200员工中有384人可以评为优秀员工.
考点: 条形统计图;用样本估计总体;扇形统计图;加权平均数;中位数.
题号
一
二
三
四
五
总分
得分
2024年湖南省长沙市青竹湖湘一外国语学校数学九上开学达标检测试题【含答案】: 这是一份2024年湖南省长沙市青竹湖湘一外国语学校数学九上开学达标检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市天心区部分学校九上数学开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市天心区部分学校九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。