2024年湖南省株洲市数学九上开学考试模拟试题【含答案】
展开
这是一份2024年湖南省株洲市数学九上开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,点M到x轴的距离是3,到y轴的距离是1,且在第二象限,则点M的坐标是( )
A.(3,﹣1)B.(-1,3)C.(-3,1)D.(-2,﹣3)
2、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
A.B.C.D.5
3、(4分)如图,在中,,是上的点,∥交于点,∥交于点,那么四边形的周长是( )
A.5B.10C.15D.20
4、(4分)已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAEB.∠DEA= ∠DABC.DE=BED.BC=DE
5、(4分)如图,中,对角线、相交于点O,交于点E,连接,若的周长为28,则的周长为( )
A.28B.24C.21D.14
6、(4分)下列二次根式中,最简二次根式的是( )
A.B.C.D.
7、(4分)如图,矩形中,对角线、交于点.若,,则的长为( )
A.6B.5C.4D.3
8、(4分)如图,菱形ABCD的对角线AC、BD相交于点O.若周长为20,BD=8,则AC的长是( )
A.3B.4C.5D.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,平行四边形ABCD中,点E为BC边上一点,AE和BD交于点F,已知△ABF的面积等于 6,△BEF的面积等于4,则四边形CDFE的面积等于___________
10、(4分)某大学自主招生考试只考数学和物理,计算综合得分时,按数学占60%,物理点40%计算.已知孔明数学得分为95分,综合得分为93分,那么孔明物理得分是__________分.
11、(4分)小聪让你写一个含有字母的二次根式.具体要求是:不论取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.
12、(4分)如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC长__________cm.
13、(4分)如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知▱ABCD的对角线AC、BD相交于点O,其周长为16,且△AOB的周长比△BOC的周长小2,求AB、BC的长.
15、(8分)画出函数y=2x-1的图象.
16、(8分)如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)
17、(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.
⑴求线段CE的长;
⑵若点H为BC边的中点,连结HD,求证:.
18、(10分)某服装店准备购进甲、乙两种服装出售,甲种每件售价120元,乙种每件售价90元.每件甲服装的进价比乙服装的进价贵20元,购进3件甲服装的费用和购进4件乙服装的费用相等,现计划购进两种服装共100件,其中甲种服装不少于65件.
(1)甲种服装进价为 元/件,乙种服装进价为 元/件;
(2)若购进这100件服装的费用不得超过7500元.
①求甲种服装最多购进多少件?
②该服装店对甲种服装每件降价元,乙种服装价格不变,如果这100件服装都可售完,那么该服装店如何进货才能获得最大利润?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,点D,E,F分别是△ABC的边AB,BC,AC上的点,且DE∥AC,EF∥AB,要使四边形ADEF是正方形,还需添加条件:__________________.
20、(4分)方程的解为_________.
21、(4分)如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA,下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形,其中,正确的有__________.(填序号)
22、(4分)学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.
23、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,点D在AB边上,∠ABC=∠ACD,
(1)求证:△ABC∽△ACD
(2)若AD=2,AB=5.求AC的长.
25、(10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:
已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.
(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?
(2)如果先进行精加工,然后进行粗加工.
①试求出销售利润元与精加工的蔬菜吨数之间的函数关系式;
②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?
26、(12分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.
(1)a=__,=____;
(2)①分别计算甲、乙成绩的方差.
②请你从平均数和方差的角度分析,谁将被选中.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据点到坐标轴的距离分别求出该点横、纵坐标的绝对值,再根据点在第二象限得出横、纵坐标的具体值即可.
【详解】
解:由点M到x轴的距离是3,到y轴的距离是1,得
|y|=3,|x|=1,
由点M在第二象限,得
x=-1,y=3,
则点M的坐标是(-1,3),
故选:B.
本题考查点到坐标轴的距离和平面直角坐标系中各象限内点的坐标特征. 熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
2、D
【解析】
先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
【详解】
解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
设AC=b,BC=a,AB=c,
∵△ABC是直角三角形,且∠BAC=90度,
∴c2+b2=a2,
∴c2+b2=a2,
又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
∴S1+S2=S3,
∵S3=8,S2=3,
∴S1=S3−S2=8−3=5,
故选:D.
本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
3、B
【解析】
由于DE∥AB,DF∥AC,则可以推出四边形AFDE是平行四边形,然后利用平行四边形的性质可以证明□AFDE的周长等于AB+AC.
【详解】
∵DE∥AB,DF∥AC,
则四边形AFDE是平行四边形,
∠B=∠EDC,∠FDB=∠C
∵AB=AC,∴∠B=∠C,
∴∠B=∠FDB,∠C=∠EDF
∴BF=FD,DE=EC,
所以:□AFDE的周长等于AB+AC=10.
故答案为B.
本题考查了平行四边形的性质、等腰三角形的性质、平行四边形的判定,熟练掌握这些知识点是本题解题的关键.
4、C
【解析】
根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.
【详解】
解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;
B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;
C、无法证明DE=BE,故本选项符合题意;
D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.
故选B.
本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.
5、D
【解析】
根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.
【详解】
解:∵四边形是平行四边形,
∴,,,
∵平行四边形的周长为28,
∴
∵,
∴是线段的中垂线,
∴,
∴的周长,
故选:D.
本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.
6、A
【解析】
根据最简二次根式的条件进行分析.
【详解】
A.,是最简二次根式;
B.,不是最简二次根式;
C.,不是最简二次根式;
D.,不是最简二次根式;
故选:A
满足下列条件的二次根式,叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式
7、B
【解析】
由矩形的性质可得:∠ABC=90°,OA=OC=OB=OD=1,∠AOB=2∠ACB=60°,△AOB为等边三角形,故AB=OA=1.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=AC=1,∠ABC=90°,
∴∠OBC=∠ACB=30°
∵∠AOB=∠OBC+∠ACB
∴∠AOB=60°
∵OA=OB
∴△AOB是等边三角形
∴AB=OA=1
故选:B
本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形判定和性质,是基础题,比较简单.
8、D
【解析】
根据菱形性质得出AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,求出OB,根据勾股定理求出OA,即可求出AC.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD,BO=OB,AO=OC,
∵菱形的周长是20,
∴DC=×20=5,
∵BD=8,
∴OD=4,
在Rt△DOC中,OD==3,
∴AC=2OC=1.
故选:D.
本题考查了菱形性质和勾股定理,注意:菱形的对角线互相垂直平分,菱形的四条边相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
利用三角形面积公式得到AF:FE=3:2,再根据平行四边形的性质得到AD∥BE,S△ABD=S△CBD,则可判断△AFD∽△EFB,利用相似的性质可计算出S△AFD=9,所以S△ABD=S△CBD=15,然后用△BCD的面积减去△BEF的面积得到四边形CDFE的面积.
【详解】
解:∵△ABF的面积等于6,△BEF的面积等于4,
即S△ABF:S△BEF=6:4=3:2,
∴AF:FE=3:2,
∵四边形ABCD为平行四边形,
∴AD∥BE,S△ABD=S△CBD,
∴△AFD∽△EFB,
∴,
∴S△AFD=×4=9,
∴S△ABD=S△CBD=6+9=15,
∴四边形CDFE的面积=15-4=1.
故答案为1.
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的性质.
10、90
【解析】
试题分析:设物理得x分,则95×60%+40%x=93,截得:x=90.
考点:加权平均数的运用
11、
【解析】
根据二次根式的定义即可求解.
【详解】
依题意写出一个二次根式为.
此题主要考查二次根式的定义,解题的关键是熟知二次根式的特点.
12、2
【解析】
根据旋转的性质得到S△AED=S△AFB,根据四边形ABCD的面积是18cm1得出正方形AFCE的面积是18cm1,求出AE、EC的长,根据等腰直角三角形的性质求出AC即可.
【详解】
解:∵四边形AFCE是正方形,
∴AE=EC,∠E=90°,
△ADE绕点A顺时针旋转90°,点D对应点交CF延长线于点B,
∴△ABF≌△ADE,
∴正方形AFCE的面积=四边形ABCD的面积=18cm1.
∴AE=CE==,
∴AC=AE=2cm.
故答案为:2.
本题考查了旋转的性质,全等三角形的性质,正方形性质,关键是求出正方形AFCE的边长.
13、18
【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长
【详解】
∵CE平分∠BCD交AD边于点E,
∴.∠ECD=∠ECB
∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC
∴∠DEC=∠ECB,
∴∠DEC=∠DCE
∴DE=DC
∵AD=2AB
∴AD=2CD
∴AE=DE=AB=3
∴AD=6
∴四边形ABCD的周长为:2×(3+6)=18.
故答案为:18.
此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行
三、解答题(本大题共5个小题,共48分)
14、AB=1,BC=5
【解析】
根据平行四边形对边相等可得BC+AB=8,根据△AOB的周长比△BOC的周长小2可得BC-AB=2,再解即可.
【详解】
解:∵▱ABCD的对角线AC、BD相交于点O,其周长为16,
∴OA=OC,OB=OD,AB=CD,AD=CB,
∴BC+AB=8①;
∵△AOB的周长比△BOC的周长小2,
∴OB+OC+BC-(OA+OB+AB)=2,
∴BC-AB=2②,
①+②得:2BC=10,
∴BC=5,
∴AB=1.
此题主要考查了平行四边形的性质,解决此题的关键是掌握平行四边形两组对边分别相等,对角线互相平分.
15、见解析.
【解析】
通过列出表格,画出函数图象即可.
【详解】
列表:
画出函数y=2x-1的图象.如图所示.
此题考查一次函数的图象,解题关键在于掌握其性质定义.
16、(1)证明见解析;(1).
【解析】
(1)由题意得OA=OB,∠OAB=∠OBC=45°又因为∠AOE+∠EOB=90°,∠BOF+∠EOB=90°可得∠AOE=∠BOF,根据ASA可证△AOE≌△BOF,可得AE=BF,可得BE+BF=AB,由勾股定理可得结论;
(1)由全等三角形的性质可得S△AOE=S△BOF,可得重叠部分的面积为正方形面积的,即可求解.
【详解】
解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAB=∠OBC=45°.
∵∠AOE+∠EOB=90°,∠BOF+∠EOB=90°,∴∠AOE=∠BOF.
在△AOE和△BOF中
,
∴△AOE≌△BOF(ASA),
∴AE=BF,
∴BE+EF=BE+AE=AB
在Rt△AOB中,AB1=OA1+OB1,且OA=OB,
∴(BE+BF)1=1OB1,
(1)∵△AOE≌△BOF,
∴S△AOE=S△BOF,
∴重叠部分的面积=S△AOB=S正方形ABCD=a1.
故答案为:a1.
本题考查了正方形的性质和全等三角形的判定和性质,掌握全等三角形的判定是解题的关键.
17、(1)CE=;(2)见解析.
【解析】
根据正方形的性质,
(1)先设CE=x(0
相关试卷
这是一份2024年湖南省株洲市醴陵市九年级数学第一学期开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省雨花区九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年湖南省益阳市名校数学九上开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。