2024年湖南长沙市芙蓉区铁路一中学数学九上开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各式不能用公式法分解因式的是( )
A.B.
C.D.
2、(4分)将一张多边形纸片沿图中虚线剪开,如果剪开后得到的两个图形的内角和相等,下列四种剪法中符合要求的是( )
A.B.C.D.
3、(4分)下列各式中,一定是二次根式的是
A.B.C.D.
4、(4分)如图,已知反比例函数和一次函数的图象相交于点、两点,则不等式的解集为( )
A.或B.
C.D.或
5、(4分)若点、在反比例函数图像上,则、大小关系是( )
A.B.C.D.
6、(4分)已知三角形的三边为2、3、4,该三角形的面积为( )
A.B.C.D.
7、(4分)如图,直线经过点,则关于的不等式的解集是( )
A.B.C.D.
8、(4分)下列不等式的变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形的对角线相交于点,过点作交于点,若,的面积为6,则___.
10、(4分)若分式值为0,则的值为__________.
11、(4分)已知y=++9,则(xy-64)2的平方根为______.
12、(4分)如图,在平行四边形ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB于点F,交DC的延长线于点G,则DE=_____.
13、(4分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
(1)求证:△BFO≌△DEO;
(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
15、(8分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
16、(8分)计算:(4+)(4﹣)
17、(10分)如图,将一个三角板放在边长为1的正方形上,并使它的直角顶点在对角线上滑动,直角的一边始终经过点,另一边与射线相交于点.
(1)当点在边上时,过点作分别交,于点,,证明:;
(2)当点在线段的延长线上时,设、两点间的距离为,的长为.
①直接写出与之间的函数关系,并写出函数自变量的取值范围;
②能否为等腰三角形?如果能,直接写出相应的值;如果不能,说明理由.
18、(10分)给出下列定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形中,点,,,分别为边、、、的中点,则中点四边形形状是_______________.
(2)如图2,点是四边形内一点,且满足,,,点,,,分别为边、、、的中点,求证:中点四边形是正方形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.
20、(4分)一项工程,甲单独做x小时完成,乙单独做y小时完成,则两人一起完成这项工程需要___小时.
21、(4分)已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是______.
22、(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.
23、(4分)直线y=﹣2x﹣1向上平移3个单位,再向左平移2个单位,得到的直线是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在正方形中,点是对角线上一点,且,过点作交于点,连接.
(1)求证:;
(2)当时,求的值.
25、(10分)如图,在△ABC中,点分别在边上,已知四边形是平行四边形。
26、(12分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.
(1)求C点坐标;
(2)求直线MN的解析式;
(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据公式法有平方差公式、完全平方公式,可得答案.
【详解】
A、x2-9,可用平方差公式,故A能用公式法分解因式;
B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
C、-x2-y2不能用平方差公式分解因式,故C正确;
D、x2-1可用平方差公式,故D能用公式法分解因式;
故选C.
本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
2、C
【解析】
根据多边形的内角和定理即可判断.
【详解】
A. 剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;
B. 剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;
C. 剪开后的两个图形都是四边形,它们的内角和都是360°;故此选项符合题意;
D. 剪开后的两个图形一个是三角形、一个是四边形,它们的内角和分别是180°、360°,故此选项不合题意;
故选:C.
此题考查多边形的内角和定理,解题关键在于根据剪开后得到的两个图形来判断.
3、C
【解析】
根据二次根式的定义进行判断.
【详解】
解:A.无意义,不是二次根式;
B.当时,是二次根式,此选项不符合题意;
C.是二次根式,符合题意;
D.不是二次根式,不符合题意;
故选C.
本题考查了二次根式的定义,关键是掌握把形如的式子叫做二次根式.
4、D
【解析】
分析两个函数以交点为界,观察交点每一侧的图像可以得到结论.
【详解】
解:观察图像得:的解集是:或.
故选D.
本题考查的是利用图像直接写不等式的解集问题,理解图像反映出来的函数值的变化对应的自变量的变化是解题关键.
5、A
【解析】
根据点A(2,y1)与点B(3,y2)都在反比例函数的图象上,可以求得y1、y2的值,从而可以比较y1、y2的大小,本题得以解决.
【详解】
∵点A(2,y1)与点B(3,y2)都在反比例函数的图象上,
∴y1=,y2=,
∵-3<-2,
∴,
故选A.
本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
6、D
【解析】
如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.
【详解】
如图所示:过点B作BD⊥AC于点D,
设BD=x,CD=y,
则AD=4-y,
在Rt△BDC中,x2+y2=32,
在Rt△ABD中,x2+(4-y)2=22,
故9+16-8y=4,解得:y= ,
∴x2+()2=9,解得:x=
故三角形的面积为:
故选:D.
本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.
7、B
【解析】
观察函数图象得到当x<2时,即图象在y轴的左侧,函数值都都大于1.
【详解】
解:观察函数图象可知当x<2时,y>1,所以关于x的不等式kx+b>1的解集是x<2.
故选:B.
本题考查了一次函数与一元一次不等式:从函数的角度看,关于的不等式的解集就是寻求使一次函数y=kx+b的值大于1的自变量x的取值范围.
8、D
【解析】
根据不等式的基本性质进行判断。
【详解】
A. ∴,故A正确;
B. ,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;
C. ,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;
D. ,在不等式两边同时除以(-3)则不等号改变,∴,故D错误
所以,选项D不正确。
主要考查了不等式的基本性质:
1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;
2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先连接EC,由题意可得OE为对角线AC的垂直平分线,可得CE=AE,S△AOE=S△COE=2,继而可得AE•BC=1,则可求得AE的长,即EC的长,然后由勾股定理求得答案.
【详解】
解:连接EC.
∵四边形ABCD是矩形
∴AO=CO,且OE⊥AC,
∴OE垂直平分AC
∴CE=AE,S△AOE=S△COE=2,
∴S△AEC=2S△AOE=1.
∴AE•BC=1,
又∵BC=4,
∴AE=2,
∴EC=2.
∴BE=
故答案为:
本题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,正确做出图形的辅助线是解题的关键.
10、-1
【解析】
根据分式值为0的条件进行求解即可.
【详解】
由题意得,x+1=0,
解得x=-1,
故答案为:-1.
本题考查了分式值为0的条件,熟练掌握分式值为0时,分子为0且分母不为0是解题的关键.
11、±1
【解析】
根据二次根式有意义的条件可得,再解可得x的值,进而可得y的值,然后可得(xy-64)2的平方根.
【详解】
解:由题意得:,
解得:x=7,
则y=9,
(xy-64)2=1,
1的平方根为±1,
故答案为:±1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
12、.
【解析】
由平行四边形的性质得出CD=AB=3,BC=AD=4,AB∥CD,由平行线的性质得出∠GCE=∠B=60°,证出EF⊥DG,由含30°角的直角三角形的性质得出CG=CE=1,求出EG=CG=,DG=CD+CG=4,由勾股定理求出DE即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=3,BC=AD=4,AB∥CD,
∴∠GCE=∠B=60°,
∵E是BC的中点,
∴CE=BE=2,
∵EF⊥AB,
∴EF⊥DG,
∴∠G=90°,
∴CG=CE=1,
∴EG=CG=,DG=CD+CG=3+1=4,
∴DE=;
故答案为.
本题考查了平行四边形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出CG是解决问题的关键.
13、m≤
【解析】
由关于x的一元二次方程x2﹣2x+4m=0有实数根,可知b2﹣4ac≥0,据此列不等式求解即可.
【详解】
解:由题意得,
4-4×1×4m≥0
解之得m≤
故答案为m≤.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;
(2)四边形AFCE是矩形,证明见解析;
(3)四边形AFCE是正方形.
【解析】
(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
(2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴OB=OD,AD∥BC,AD=BC,
∴∠OBF=∠ODE,
在△BFO和△DEO中,
∵ ,
∴△BFO≌△DEO(ASA);
(2)四边形AFCE是矩形;理由如下:
∵△BFO≌△DEO,
∴BF=DE,
∴CF=AE,
∵AD∥BC,
∴四边形AFCE是平行四边形;
又∵AF⊥BC,
∴∠AFC=90°,
∴四边形AFCE是矩形;
(3)∵EF平分∠AEC,
∴∠AEF=∠CEF,
∵AD∥BC,
∴∠AEF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
∴四边形AFCE是正方形.
本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
15、(1) ③④;(2)详见解析
【解析】
(1)根据“对角线垂直四边形"的定义求解;
(2)根据三角形中位线的性质得到HG//EF,HE//GF,则可判断四边形EFGH是平行四边形,再证明∠EHG=90°,然后判断四边形EFGH是矩形;
【详解】
(1) 菱形和正方形是“对角线垂直四边形,故③④满足题意.
(2)证明:∵点分别是边、、、的中点,
∴,且;,且;.
∴.
∴四边形是平行四边形.
∵,
∴,
又∵,
∴.
∴.
∴是矩形.
本题考查了中点四边形:任意四边形各边中点的连线所组成的四边形为平行四边形,也考查了三角形中位线性质、菱形、正方形的性质.
16、1.
【解析】
根据运算法则一一进行计算.
【详解】
原式=42﹣()2=16﹣7=1.
本题考查了等式的运算法则,熟练掌握等式的运算法则是本题解题关键.
17、(1)见解析;(2)①.②能为等腰三角形,.
【解析】
(1)根据正方形的性质证明,即可求解;
(2)①根据题意作图,由正方形的性质可知当时,点在线段的延长线上,同理可得,得到MP=NQ,利用等腰直角三角形的性质可知MP=x,NC=CD-DN=1-x,CQ=y,代入MP=NQ化简即可求解;
②由是等腰三角形,∠PCQ=135°,CP=CQ成立,代入解方程即可求解 ,
【详解】
(1)证明:∵在正方形中,为对角线,
∴,,∵,
∴,,
∴,
又∵,
∴.
∵,∴.
又∵,∴,
∴,
在中,
∵
∴,∴.
(2)①如图,点在线段的延长线上,
同(1)可证,
∴MP=NQ,
在等腰直角三角形AMP中,AP==x
∴MP=x=AM,
∴NC=BM=AB-AM=1-x
故NQ=NC+CQ=1-x+y
∴x=1-x+y
化简得
当P点位于AC中点时,Q点恰好在C点,又AP<AC=
∴
∴与之间的函数关系是()
②当时,能为等腰三角形,
理由:当点在的延长线上,CQ=,CQ=AC-AP=,
由是等腰三角形,∠PCQ=∠PCB+∠BCQ=45°+90°=135°,
∴CP=CQ成立,
即时,解得.
此题主要考查正方形的性质综合,解题的关键是熟知全等三角形的判定与性质、等腰三角形的性质与判定.
18、 (1) 平行四边形;(2)见解析
【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
(2)首先证明四边形EFGH是菱形.再证明∠EHG=90°.利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
【详解】
(1)证明:如图1中,连接BD.
∵点E,H分别为边AB,DA的中点,
∴EH∥BD,EH=BD,
∵点F,G分别为边BC,CD的中点,
∴FG∥BD,FG=BD,
∴EH∥FG,EH=GF,
∴中点四边形EFGH是平行四边形.
故答案为平行四边形;
(2)证明:如图2中,连接,.
∵,∴即,
在和中,
,
∴,
∴
∵点,,分别为边,,的中点,
∴,,
由(1)可知,四边形是平行四边形,
∴四边形是菱形.
如图设与交于点.与交于点,与交于点.
∵,
∴,
∵,
∴
∵,,
∴,
∵四边形是菱形,
∴四边形是正方形.
本题考查平行四边形的判定和性质、全等三角形的判定和性质、菱形的判定和性质、正方形的判定和性质等知识,解题的关键是灵活应用三角形中位线定理,学会添加常用辅助线.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、20
【解析】
令S=380m,即可求出t的值.
【详解】
解:当s=380m时,9t+t2=380,
整理得t2+18t﹣760=0,
即(t﹣20)(t+38)=0,
解得t1=20,t2=﹣38(舍去).
∴行驶380米需要20秒,
故答案为:20
本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
20、
【解析】
甲单独做一天可完成工程总量的,乙单独做一天可完成工程总量的,二人合作一天可完成工程总量的.工程总量除以二人合作一天可完成工程量即可得出二人合作完成该工程所需天数.
【详解】
解答:解:设该工程总量为1.
二人合作完成该工程所需天数=1÷()=1÷=.
本题考查列代数式(分式),解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.
21、3.5
【解析】
先根据平均数的计算公式求出x的值,再根据中位数的定义即可得出答案.
【详解】
∵数据3、a、4、6的平均数是4,
∴(3+a+4+6)÷4=4,
∴x=3,
把这组数据从小到大排列为:3、3、4、6最中间的数是3.5,
则中位数是3.5;
故答案为:3.5.
此题考查中位数,算术平均数,解题关键在于利用平均数求出a的值.
22、八
【解析】
360°÷(180°-135°)=8
23、y=﹣2x﹣2
【解析】
根据“左加右减,上加下减”的平移规律即可求解.
【详解】
解:直线先向上平移3个单位,再向左平移2个单位得到直线,即.
故答案为.
本题考查图形的平移变换和函数解析式之间的关系.掌握平移规律“左加右减,上加下减”是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)详见解析;(2)
【解析】
(1)连接CF,利用HL证明Rt△CDF≌Rt△CEF,可得DF=EF,再根据等腰直角三角形可得EF=AF,所以得出DF=AE.
(2) 过点E作EH⊥AB于H,利用勾股定理求出AC,再求出AE,根据特殊直角三角形的边长比求出EH和AH,可得BH,再利用勾股定理求出BE2即可.
【详解】
(1)连接CF,
∵∠D=∠CEF=90°,CD=CE,CF=CF,
∴Rt△CDF≌Rt△CEF(HL),
∴DF=EF,
∵AC为正方形ABCD的对角线,
∴∠CAD=45°,
∴△AEF为等腰直角三角形,
∴EF=AF,
∴DF=AE.
(2) ∵AB=2+,
∴由勾股定理得AC=2+2,
∵CE=CD,
∴AE=.
过点E作EH⊥AB于H,则△AEH是等腰直角三角形.
∴EH=AH=AE=×=1.
∴BH=2+-1=1+.
在Rt△BEH中,BE2=BH2+EH2=(1+)2+12=4+2.
本题考查正方形的性质、三角形全等的性质和判定,关键在于熟练掌握基础知识灵活运用.
25、见解析;
【解析】
想办法证明EF∥AB即可解决问题;
【详解】
证明:,
.
,
.
,
四边形是平行四边形.
本题考查证明平行四边形,熟练掌握平行的性质及定义是解题关键.
26、(1)C(0,1).
(2)y=x+1.
(3)P1(4,3),P2()P3(),P4().
【解析】
试题分析:
(1)通过解方程x2﹣14x+42=0可以求得OC=1,OA=2.则C(0,1);
(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;
(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.
试题解析:
(1)解方程x2-14x+42=0得
x1=1,x2=2
∵OA,OC(OA>OC)的长分别是一元二次方程x2-14x+42=0的两个实数根
∴OC=1,OA=2
∴C(0,1)
(2)设直线MN的解析式是y=kx+b(k≠0)
由(1)知,OA=2,则A(2,0)
∵点A、C都在直线MN上
∴
解得,
∴直线MN的解析式为y=-x+1
(3)
∵A(2,0),C(0,1)
∴根据题意知B(2,1)
∵点P在直线MN y=-x+1上
∴设P(a,--a+1)
当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:
①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);
②当PC=BC时,a2+(-a+1-1)2=14
解得,a=±,则P2(-,),P3(,)
③当PB=BC时,(a-2)2+(-a+1-1)2=14
解得,a=,则-a+1=-
∴P4(,)
综上所述,符合条件的点P有:P1(4,3),P2(-,),P3(,),P4(,-)
考点:一次函数综合题.
题号
一
二
三
四
五
总分
得分
2024年湖南省长沙市长郡中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年湖南省长沙市长郡中学数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市铁路一中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市铁路一中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】: 这是一份2024-2025学年湖南省长沙市芙蓉区第十六中学数学九上开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。