搜索
    上传资料 赚现金
    英语朗读宝

    2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】

    2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】第1页
    2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】第2页
    2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】

    展开

    这是一份2024年吉林省长春市东北师范大附属中学九年级数学第一学期开学复习检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是( )
    A.1B.4C.3D.2
    2、(4分)如果5x=6y,那么下列结论正确的是( )
    A.B.C.D.
    3、(4分)如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,于G,已知,则下列结论:;;:其中正确的结论是
    A.B.C.D.
    4、(4分)用配方法解一元二次方程,此方程可化为的正确形式是( )
    A.B.C.D.
    5、(4分)下列运算中正确的是( )
    A.+=B.
    C.D.
    6、(4分)关于的不等式的解集如图所示,则的取值是
    A.0B.C.D.
    7、(4分)正十边形的每一个内角的度数为( )
    A.120°B.135°C.140°D.144°
    8、(4分)若反比例函数,在每个象限内y随x的增大而减小,则m的取值范围是( )
    A.m>B.m<C.m>一D.m<一
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.
    10、(4分)一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.
    11、(4分)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为丈(丈尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是尺,根据题意,可列方程为__________.
    12、(4分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′,当点A′与点C重合时,点A与点B′之间的距离为_____.
    13、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)阅读理解:
    我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.
    阅读下列材料,完成习题:
    如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=
    例如:a=3,c=7,则sinA=
    问题:在Rt△ABC中,∠C=90°
    (1)如图2,BC=5,AB=8,求sinA的值.
    (2)如图3,当∠A=45°时,求sinB的值.
    (3)AC=2,sinB=,求BC的长度.
    15、(8分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
    16、(8分)小明在数学活动课上,将边长为和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.
    (1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
    (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.
    17、(10分)如图,在矩形ABCD中,E是AD上一点,MN垂直平分BE,分别交AD,BE,BC于点M,O,N,连接BM,EN
    (1)求证:四边形BMEN是菱形.
    (2)若AE=8,F为AB的中点,BF+OB=8,求MN的长.
    18、(10分)如图,C地到A,B两地分别有笔直的道路,相连,A地与B地之间有一条河流通过,A,B,C三地的距离如图所示.
    (1)如果A地在C地的正东方向,那么B地在C地的什么方向?
    (2)现计划把河水从河道段的点D引到C地,求C,D两点间的最短距离.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.
    20、(4分)若是完全平方式,则的值是__________.
    21、(4分)因式分解:x2﹣x=______.
    22、(4分)计算:﹣=__.
    23、(4分)一运动员推铅球,铅球经过的路线为如图所示的抛物线,则铅球所经过的路线的函数表达式为________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知△ABC三个顶点的坐标分别是A(﹣3,1),B(﹣1,﹣1),C(2,2).
    (1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1,B1,C1的坐标;
    (2)画出△ABC绕点B逆时针旋转90°所得到的△A2B2C2,并求出S.
    25、(10分)如图,方格纸中每个小方格都是长为1个单位的正方形.若学校位置的坐标为A(1,2),解答以下问题:
    (1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
    (2)若体育馆位置的坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
    26、(12分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.
    解:∵∠BAC=90°,AD⊥BC,∠B=∠B
    ∴△ABD∽△CBA

    ∵AB=2,BC=4
    ∴,解得
    ∴CD=BC-BD=3
    故选C.
    考点:相似三角形的判定和性质
    点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
    2、A
    【解析】
    试题解析:A, 可以得出:
    故选A.
    3、A
    【解析】
    证=,可得易证△AEF≌△AEG(SAS),所以,∠AFE=∠AGE,所以,;由=,可证=,连接BD,易证△ABF≌△BAO,可得,BF=AO,所以,AC=2BF;同理,可证△BOE≌△BGF,可得,OE=EG,所以,CE=CO+OE=BF+EG.
    【详解】
    因为,四边形ABCD是菱形,
    所以,,AB=AD=CD=BC,
    所以,=,
    所以,
    因为,
    所以,=,
    又因为,
    所以,,AG=,
    又因为F是菱形ABCD的边AD的中点,
    所以,AF=,
    所以,AF=AG,
    所以,易证△AEF≌△AEG(SAS),
    所以,∠AFE=∠AGE,
    所以,,
    所以,由=,
    可证=,
    连接BD,
    易证△ABF≌△BAO,
    所以,BF=AO,
    所以,AC=2BF,
    同理,可证△BOE≌△BGF,
    所以,OE=EG,
    所以,CE=CO+OE=BF+EG,
    综合上述,正确
    故选:A
    此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.
    4、D
    【解析】
    方程常数项移到右边,两边加上9变形即可得到结果.
    【详解】
    解:方程移项得:x2-6x=-1,
    配方得:x2-6x+9=8,即(x-3)2=8,
    故选D.
    本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.
    5、D
    【解析】
    根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.
    【详解】
    A. +=2+3=5,故A选项错误;
    B. =2,故B选项错误;
    C. ,故C选项错误;
    D. ,正确,
    故选D.
    本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.
    6、D
    【解析】
    首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以=-1,解出即可;
    【详解】
    解:不等式,
    解得x0,
    解得:m>,
    故选A.
    本题考查了反比例函数的性质,①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.
    【详解】
    解:一次函数y=kx﹣1的图象经过点(﹣2,1),
    即当x=﹣2时,y=1,可得:1=-2k﹣1,
    解得:k=﹣1.
    则k的值为﹣1.
    本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.
    10、-2<m<1
    【解析】
    解:由已知得:,
    解得:-2<m<1.
    故答案为:-2<m<1.
    11、
    【解析】
    试题解析:设由题意可得:.
    故答案为.
    12、1
    【解析】
    由菱形的性质得出AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,由平移的性质得出O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,得出AO'=AC+O'C=6,由勾股定理即可得出答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AO=OC=AC=2,OB=OD=BD=8,
    ∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
    ∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
    ∴AO'=AC+O'C=6,
    ∴AB'=;
    故答案为1.
    此题考查菱形的性质,平移的性质,勾股定理,解题关键在于得到AO=OC=AC=2,OB=OD=BD=8.
    13、1
    【解析】
    先利用正方形的性质得到∠ADC=90°,CD=AD=1 ,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠ADC=90°,CD=AD=1,
    ∵点E是正方形ABCD边AD的中点,
    ∴AE=DE= ,
    在Rt△CDE中,
    ∵AF⊥CE,
    ∴∠F=90°,
    ∵∠AEF=∠CED,
    ∴Rt△AEF∽Rt△CED,
    ∴,即
    ∴AF=1.
    故答案为1.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.
    三、解答题(本大题共5个小题,共48分)
    14、 (1);(2);(3)2.
    【解析】
    分析:(1)根据sinA=直接写结论即可;
    (2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;
    (3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.
    详解:(1)sinA=;
    (2)在Rt△ABC中,∠A=45°,
    设AC=x,则BC=x,AB=,
    则sinB=;
    (3)sinB=,则AB=4,
    由勾股定理得:BC2=AB2-AC2 =16-12=4,
    ∴BC=2.
    点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.
    15、见解析.
    【解析】
    根据中位线定理和已知,易证明△NMP是等腰三角形,根据等腰三角形的性质即可得到结论.
    【详解】
    解:证明:∵是中点,是中点,
    ∴是的中位线,
    ∴,
    ∵是中点,是中点,
    ∴是的中位线,
    ∴,
    ∵,
    ∴,
    ∴是等腰三角形,
    ∴.
    此题主要考查了三角形中位线定理,以及等腰三角形的判定与性质,熟练掌握等腰三角形的性质是解题的关键.
    16、(2)详见解析(2)CF=
    【解析】
    (2)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证.
    (2)与(2)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OGOE,再求出AG,然后利用勾股定理列式计算即可求出AD.
    【详解】
    解:(2)AD=CF.理由如下:
    在正方形ABCO和正方形ODEF中,∵AO=CO,OD=OF,∠AOC=∠DOF=90°,
    ∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF.
    在△AOD和△COF中,∵AO=CO,∠AOD=∠COF,OD=OF,
    ∴△AOD≌△COF(SAS).
    ∴AD=CF.
    (2)与(2)同理求出CF=AD,
    如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,
    ∵正方形ODEF的边长为,∴OE=×=2.
    ∴DG=OG=OE=×2=2.
    ∴AG=AO+OG=3+2=4,
    在Rt△ADG中,,
    ∴CF=AD=.
    17、 (1)证明见解析;(2)MN=.
    【解析】
    (1)先根据线段垂直平分线的性质证明MB=ME,由ASA证明△BON≌△EOM,得出ME=NB,证出四边形BMEN是平行四边形,再根据菱形的判定即可得出结论;
    (2)根据已知条件得到AB+BE=2BF+2OB=16,设AB=x,则BE=16﹣x,根据勾股定理得到x=6,求得BE=16﹣x=10,OB=BE=5,设ME=y,则AM=8﹣y,BM=ME=y,根据勾股定理即可得到结论.
    【详解】
    (1)证明:∵MN垂直平分BE,
    ∴MB=ME,OB=OE,
    ∵四边形ABCD是矩形,
    ∴AD∥BC,
    ∴∠MEO=∠NBO,
    在△BON与△EOM中,,
    ∴△BON≌△EOM(ASA),
    ∴ME=NB,
    又∵AD∥BC,
    ∴四边形BMEN是平行四边形,
    又∵MB=ME,
    ∴四边形BMEN是菱形;
    (2)解:∵O,F分别为MN,AB的中点,
    ∴OF∥AD,
    ∴∠OFB=∠EAB=90°,
    ∵BF+OB=8,
    ∴AB+BE=2BF+2OB=16,
    设AB=x,则BE=16﹣x,
    在Rt△ABE中,82+x2=(16﹣x)2,
    解得x=6,
    ∴BE=16﹣x=10,
    ∴OB=BE=5,
    设ME=y,则AM=8﹣y,BM=ME=y,
    在Rt△ABM中,62+(8﹣y)2=y2,
    解得y=,
    在Rt△BOM中,MO==,
    ∴MN=2MO=.
    本题主要考查菱形的判定及性质,勾股定理,掌握菱形的判定方法及性质,结合勾股定理合理的利用方程的思想是解题的关键.
    18、 (1) B地在C地的正北方向;(2)4.8km
    【解析】
    (1)首先根据三地距离关系,可判定其为直角三角形,然后即可判定方位;
    (2)首先作,即可得出最短距离为CD,然后根据直角三角形的面积列出关系式,即可得解.
    【详解】
    (1)∵,即,
    ∴是直角三角形
    ∴B地在C地的正北方向
    (2)作,垂足为D,
    ∴线段的长就是C,D两点间的最短距离.
    ∵是直角三角形

    ∴所求的最短距离为
    此题主要考查直角三角形的实际应用,熟练运用,即可解题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.
    【详解】
    解:∵b=+﹣2,

    ∴1-2a=0,
    解得:a=,则b=-2,
    故ab=()-2=1.
    故答案为1.
    此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.
    20、
    【解析】
    根据完全平方公式即可求解.
    【详解】
    ∵是完全平方式,
    故k=
    此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.
    21、x(x﹣1)
    【解析】分析:提取公因式x即可.
    详解:x2−x=x(x−1).
    故答案为:x(x−1).
    点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
    22、
    【解析】
    分析:先将二次根式化为最简,然后合并同类二次根式即可.
    详解:原式=3-2
    =.
    故答案为.
    点睛:本题考查了二次根式的加减运算,解答本题得关键是掌握二次根式的化简及同类二次根式的合并.
    23、
    【解析】
    由抛物线的顶点坐标为(4,3),可设其解析式为,再将(0,)代入求出a的值即可.
    【详解】
    解:由图知,抛物线的顶点坐标为(4,3),
    故设抛物线解析式为,
    将点(0,)代入,得:,
    解得,
    则抛物线解析式为,
    故答案为:.
    本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析,A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2);(2)见解析,2
    【解析】
    (1)利用关于y轴对称的点的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出点A、C的对应点A2、C2得到△A2B2C2,然后用一个矩形的面积分别减去三个三角形的面积计算.
    【详解】
    (1)如图,△A1B1C1为所作;点A1,B1,C1的坐标分别为;(3,1),(1,﹣1),(2,2)
    (2)如图,△A2B2C2为所作,.
    本题考查了作图-旋转变换和轴对称变换,根据旋转的性质作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    25、 (1) (-3,-2);(2)1.
    【解析】
    (1)利用点A的坐标画出直角坐标系;根据点的坐标的意义描出点B;
    (2)利用三角形的面积得到△ABC的面积.
    【详解】
    解:(1)建立直角坐标系如图所示:
    图书馆B位置的坐标为(-3,-2);
    (2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为=×5×4=1.
    本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
    26、y=x+
    【解析】
    试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
    解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
    ∴k=
    ∴y与x的函数关系式为.
    考点:待定系数法求一次函数解析式.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年吉林省东北师范大附属中学九上数学开学质量跟踪监视模拟试题【含答案】:

    这是一份2024-2025学年吉林省东北师范大附属中学九上数学开学质量跟踪监视模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春市东北师范大附属中学2023-2024学年数学九年级第一学期期末统考试题含答案:

    这是一份吉林省长春市东北师范大附属中学2023-2024学年数学九年级第一学期期末统考试题含答案,共7页。试卷主要包含了方程的解是,两个相邻自然数的积是1等内容,欢迎下载使用。

    吉林省长春市东北师范大附属中学2023-2024学年八年级数学第一学期期末质量检测试题含答案:

    这是一份吉林省长春市东北师范大附属中学2023-2024学年八年级数学第一学期期末质量检测试题含答案,共8页。试卷主要包含了用科学计数法表示为,表示一次函数与正比例函数,如图,已知,下列四个分式方程中无解的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map