开学活动
搜索
    上传资料 赚现金

    2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】

    2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】第1页
    2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】第2页
    2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】

    展开

    这是一份2024年江苏省常州市钟楼区二十四中学九上数学开学监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为( )
    A.2B.4C.D.
    2、(4分)为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户居民的日用电量,结果如下表:
    则关于这15户家庭的日用电量,下列说法错误的是( )
    A.众数是5度B.平均数6度
    C.极差(最大值-最小值)是4度D.中位数是6度
    3、(4分)如图,一次函数y1=x-1与反比例函数y2=的图象交于点A(2,1)、B(-1,-2),则使y1y2的x的取值范围是( ).
    A.x2B.x2或1x0
    C.1x0D.x2或x1
    4、(4分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为( )
    A.(﹣1,0)B.(﹣1,﹣1)C.(﹣2,0)D.(﹣2,﹣1)
    5、(4分)已知点在反比例函数的图象上,则下列点也在该函数图象上的是( )
    A.B.C.D.
    6、(4分)如图,在正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是( )
    A.135°B.120°C.1.5°D.2.5°
    7、(4分)下列事件属于必然事件的是()
    A.抛掷两枚硬币,结果一正一反
    B.取一个实数的值为 1
    C.取一个实数
    D.角平分线上的点到角的两边的距离相等
    8、(4分)下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
    A.18cm2B.36cm2C.72cm2D.108cm2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)不等式2x+8≥3(x+2)的解集为_____.
    10、(4分)比较大小:32_____23.
    11、(4分)已知点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,则(a+b)2014=_____.
    12、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x>ax+4的解集为___.
    13、(4分)二次根式有意义的条件是__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.
    (1)求证:∠ABE=∠CAD;
    (2)如图2,以AD为边向左作等边△ADG,连接BG.
    ⅰ)试判断四边形AGBE的形状,并说明理由;
    ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).
    15、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.
    16、(8分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
    17、(10分)如图,已知中,,的垂直平分线交于,交于,若,,求的长.
    18、(10分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.
    20、(4分)将直线的图象向上平移3个单位长度,得到直线______.
    21、(4分)关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值范围是___.
    22、(4分)如图 ,D 为△ABC 的 AC 边上的一点,∠A=∠DBC=36°,∠C=72°,则图中 共有等腰三角形____个.
    23、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,将矩形沿折叠,使点恰好落在边的中点上,点落在处,交于点.若,,求线段的长.
    25、(10分)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足,与BC交于点D,S△BOD=21,求:
    (1)S△BOC
    (2)k的值.
    26、(12分)解分式方程:﹣1=.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    【分析】连接BD,利用菱形性质和三角形中位线性质可解得.
    【详解】连接BD,
    因为,四边形ABCD是菱形,
    所以,AB=AD=4,
    又因为∠A=60°,
    所以,三角形ABD是等边三角形.
    所以,BD=AB=AD=4
    因为,E,F是DP、BP的中点,
    所以,EF是三角形ABD的中位线,
    所以,EF=BD=2
    故选A
    【点睛】本题考核知识点:菱形,三角形中位线.解题关键点:理解菱形,三角形中位线性质.
    2、B
    【解析】
    根据众数的定义,在一组数据中出现次数最多就是众数,以及根据加权平均数的求法,可以得出平均数,极差是最大值与最小值的差,中位数是按大小排列后最中间一个或两个的平均数,求出即可.
    【详解】
    解:∵由图表得:15户家庭日用电量分别为:4,4,5,5,5,5,5,6,6,6,6, 7,7,7, 8
    ∴此组数据的众数是:5度,故本选项A正确;
    此组数据的平均数是:(4×2+5×5+6×4+7×3+8)÷15≈5.73度,故本选项B错误;
    极差是:8-4=4度,故本选项C正确;
    中位数是:6度,故本选项D正确.
    故选:B.
    本题主要考查了众数,中位数,极差以及加权平均数的求法,正确的区分它们的定义是解决问题的关键.
    3、B
    【解析】
    根据交点坐标及图象的高低即可判断取值范围.
    【详解】
    要使,则一次函数的图象要高于反比例函数的图象,
    ∵两图象交于点A(2,1)、B(-1,-2),
    ∴由图象可得:当或时,一次函数的图象高于反比例函数的图象,
    ∴使的x的取值范围是:或.
    故选:B.
    本题考查一次函数与反比例函数的图象,要掌握由图象解不等式的方法.
    4、B
    【解析】
    已知点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,根据向左平移横坐标减,向下平移纵坐标减的平移规律可得,点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以B的坐标为(﹣1,﹣1).
    故答案选C.
    考点:坐标与图形变化﹣平移.
    5、D
    【解析】
    先把点(2,3)代入反比例函数,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.
    【详解】
    ∵点(2,−3)在反比例函数的图象上,
    ∴k=2×(−3)=-1.
    A、∵1×5=5≠−1,∴此点不在函数图象上;
    B、∵-1×5=-5=−1,∴此点不在函数图象上;
    C、∵3×2=1≠−1,∴此点不在函数图象上;
    D、∵(−2)×3=-1,∴此点在函数图象上.
    故选:D.
    本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
    6、C
    【解析】
    因为正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线BF交于P,
    所以∠DBC=∠BDC=45°,∠DBF=∠FBE=6.5°,
    所以∠BPD=∠PBC+∠BCP=90°+6.5°=4.5°.
    所以∠FPC=∠BPD=4.5°.
    故选C
    考点:4.正方形的性质;5.菱形的性质;6.三角形外角的性质.
    7、D
    【解析】
    必然事件就是一定发生的事件,据此判断即可解答.
    【详解】
    A、可能会出现两正,两反或一正一反或一反一正等4种情况,故错误,不合题意;
    B、x应取不等于0的数,故错误,不合题意;
    C、取一个实数,故错误,不合题意;
    D、正确,属于必然事件,符合题意;
    故选:D.
    本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    8、D
    【解析】
    根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的3倍.
    【详解】
    根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.
    即A、B、C、D、E、F的面积之和为3个G的面积.
    ∵M的面积是61=36 cm1,
    ∴A、B、C、D、E、F的面积之和为36×3=108 cm1.
    故选D.
    考查了勾股定理,注意运用勾股定理和正方形的面积公式证明结论:6个小正方形的面积和等于最大正方形的面积的1倍.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x≤2
    【解析】
    根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
    【详解】
    去括号,得:2x+8≥3x+6,
    移项,得:2x-3x≥6-8,
    合并同类项,得:-x≥-2,
    系数化为1,得:x≤2,
    故答案为x≤2
    本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    10、>
    【解析】
    先计算乘方,再根据有理数的大小比较的方法进行比较即可.
    【详解】
    ∵32=9,23=8,9>8,
    ∴32>23.
    故答案为>.
    本题考查了有理数大小比较,同号有理数比较大小的方法:
    都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,
    (1)作差,差大于0,前者大,差小于0,后者大;
    (2)作商,商大于1,前者大,商小于1,后者大.
    都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.
    异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,
    都是字母:就要分情况讨论
    11、1
    【解析】
    关于x轴对称的点,横坐标相同,纵坐标互为相反数,可求出a,b,得到答案.
    【详解】
    解:点P(a﹣1,5)和Q(2,b﹣1)关于x轴对称,得
    a﹣1=2,b﹣1=﹣5,
    解得a=3,b=﹣4,
    (a+b)2014=(﹣1)2014=1,
    故答案为:1.
    本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
    12、x>
    【解析】
    由于函数y=2x和y=ax+4的图象相交于点A(),观察函数图象得到当x>时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>.
    【详解】
    解:∵函数y=2x和y=ax+4的图象相交于点A(),∴当x>时,2x>ax+4,
    即不等式2x>ax+4的解集为x>.
    故答案为:x>.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    13、
    【解析】
    根据被开方式大于零列式求解即可.
    【详解】
    由题意得
    x-3>0,
    ∴x>3.
    故答案为:x>3.
    本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(2)ⅰ)四边形AGBE是平行四边形,证明详见解析;ⅱ).
    【解析】
    (1)只要证明△BAE≌△ACD;
    (2)ⅰ)四边形AGBE是平行四边形,只要证明BG=AE,BG∥AE即可;
    ⅱ)求出四边形BGAE的周长,△ABC的周长即可;
    【详解】
    (1)证明:如图1中,
    ∵△ABC是等边三角形,
    ∴AB=AC,∠BAE=∠C=60°,
    ∵AE=CD,
    ∴△BAE≌△ACD,
    ∴∠ABE=∠CAD.
    (2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.
    理由:∵△ADG,△ABC都是等边三角形,
    ∴AG=AD,AB=AC,
    ∴∠GAD=∠BAC=60°,
    ∴△GAB≌△DAC,
    ∴BG=CD,∠ABG=∠C,
    ∵CD=AE,∠C=∠BAE,
    ∴BG=AE,∠ABG=∠BAE,
    ∴BG∥AE,
    ∴四边形AGBE是平行四边形,
    ⅱ)如图2中,作AH⊥BC于H.
    ∵BH=CH=


    ∴四边形BGAE的周长=,△ABC的周长=3(k+1),
    ∴四边形AGBE与△ABC的周长比=
    本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    15、57+12﹣
    【解析】
    试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.
    试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)
    =(12+12+45)﹣(6﹣2+2﹣5)
    =(57+12﹣)(cm2).
    考点:二次根式的应用
    16、见解析
    【解析】
    根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC,AD∥BC,
    ∴DE∥BF,∠EBC=∠AEB,
    ∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,
    ∴∠ADF=ADC,∠EBC=ABC,
    ∴∠ADF=∠EBC,
    ∴∠AEB=∠ADF,
    ∴BE∥DF,
    ∵DE∥BF,
    ∴四边形BEDF是平行四边形.
    本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.
    17、
    【解析】
    连接MA,可求得MA=2MC,在Rt△AMC中可求得MC,则可求BC,在Rt△ABC中,由勾股定理可求得AB.
    【详解】
    解:如图
    连接,
    在线段的垂直平分线上,


    ,即,
    解得,


    在中,由勾股定理可得,
    即的长为.
    本题考查线段垂直平分线的性质,解题的关键是熟练掌握线段垂直平分线的性质.
    18、5m
    【解析】
    设矩形的宽BC=xm.根据面积列出方程求解可得.
    【详解】
    解:设矩形的宽BC=xm.则AB=(20-2x)m,
    根据题意得: x(20-2x)=50,
    解得:,
    答:矩形的宽为5m.
    此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    如图,在Rt△ADF和Rt△AEF中,
    AD=AE,AF=AF,
    ∴≌(),
    故,
    因为是正方形的对角线,
    故,
    故∠FAD=22.5°,
    故答案为22.5.
    20、
    【解析】
    上下平移时只需让的值加减即可.
    【详解】
    原直线的,,向上平移3个单位长度得到了新直线,那么新直线的,,所以新直线的解析式为:.
    故答案为:.
    考查了一次函数图象与几何变换,要注意求直线平移后的解析式时的值不变,只有发生变化.
    21、1.
    【解析】
    首先计算出不等式的解集x≤,再结合数轴可得不等式的解集为x≤1,进而得到方程=1,解方程可得答案.
    【详解】
    2x﹣a≤﹣1,
    x≤,
    ∵解集是x≤1,
    ∴=1,解得:a=1,
    故答案为1.
    此题主要考查了在数轴上表示不等式的解集,关键是正确解不等式.
    22、1
    【解析】
    由∠C=72゜,∠A=∠DBC=16゜,根据三角形内角和定理与三角形外角的性质,可求得∠ABD=∠A=16°,∠ABC=∠BCD=∠BDC=72°,继而求得答案.
    【详解】
    解:∵∠C=72゜,∠A=∠DBC=16゜,
    ∴∠BDC=180°-∠DBC-∠C=72°=∠C,
    ∴BC=BD,即△BCD是等腰三角形;
    ∴∠ABD=∠BDC-∠A=16°=∠A,
    ∴AD=BD,即△ABD是等腰三角形;
    ∴∠ABC=∠ABD+∠DBC=72°=∠C,
    ∴AB=AC,即△ABC是等腰三角形.
    故答案为:1.
    此题考查了等腰三角形的判定、三角形的外角的性质以及三角形内角和定理.此题难度不大,注意掌握数形结合思想的应用.
    23、-1
    【解析】
    设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
    【详解】
    设点A(x,),则B(,),
    ∴AB=x-,
    则(x-)•=5,
    k=-1.
    故答案为:-1.
    本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、.
    【解析】
    先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.
    【详解】
    解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,
    设BF=x,则FC=FC′=9-x,
    ∵BF2+BC′2=FC′2,
    ∴x2+32=(9-x)2,
    解得:x=4,即BF=4,
    ∵∠FC′M=90°,
    ∴∠AC′M+∠BC′F=90°,
    又∵∠BFC′+BC′F=90°,
    ∴∠AC′M=∠BFC′,
    ∵∠A=∠B=90°,
    ∴△AMC′∽△BC′F,

    ∵BC′=AC′=3,
    ∴AM=.
    本题主要考查了折叠的性质,矩形的性质,相似三角形的判定与性质,能够发现△AMC′∽△BC′F是解决问题的关键.
    25、(1)S△BOC=25;(2)k=8
    【解析】
    (1)过点A作AE⊥OC于点E,交OD于点F,由平行线分线段成比例可得===,利用面积比是相似比的平方得==,根据反比例函数图象性质得S△AOE=S△ODC,所以== ,进而△BOC的面积.(2) 设A(a,b),由(1)可得S△OCD=4 ,进而可得ab=8,从而求出k的值.
    【详解】
    解:过点A作AE⊥OC于点E,交OD于点F,
    ∵AE∥BC, ,
    ∴===,
    ∴==,
    ∵ S△AOE=S△ODC,
    ∴== ,
    ∴S△BOC=25,
    (2)设A(a,b),
    ∵点A在第一象限,
    ∴k=ab>0,
    ∵S△BOC=25,S△BOD=21,
    ∴S△OCD=4 即ab=4,
    ∴ab=8,
    ∴k=8.
    本题考查了反比例函数的图象和性质及相似三角形的性质.灵活运用反比例函数图象的几何意义是解题关键.
    26、分式方程的解为x=1.1.
    【解析】
    根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.
    【详解】
    两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,
    解得:x=1.1,
    检验:x=1.1时,3(x﹣1)=1.1≠0,
    所以分式方程的解为x=1.1.
    本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
    题号





    总分
    得分
    批阅人
    日用电量
    (单位:度)
    4
    5
    6
    7
    8
    户数
    2
    5
    4
    3
    1

    相关试卷

    江苏省常州市钟楼区二十四中学2023-2024学年数学九上期末考试试题含答案:

    这是一份江苏省常州市钟楼区二十四中学2023-2024学年数学九上期末考试试题含答案,共7页。试卷主要包含了如图,在菱形中,,,,则的值是,下列方程中,没有实数根的方程是,如图所示,该几何体的俯视图是等内容,欢迎下载使用。

    2023-2024学年江苏省常州市钟楼区二十四中学八年级数学第一学期期末学业水平测试模拟试题含答案:

    这是一份2023-2024学年江苏省常州市钟楼区二十四中学八年级数学第一学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若分式的值为0,则x的取值是,解方程组时,①—②,得等内容,欢迎下载使用。

    江苏省常州市钟楼区二十四中学2022-2023学年七年级数学第二学期期末检测试题含答案:

    这是一份江苏省常州市钟楼区二十四中学2022-2023学年七年级数学第二学期期末检测试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map