2024年江苏省高邮市车逻镇初级中学数学九上开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)对于任意不相等的两个实数,,定义运算如下:.如果,那么的值为( )
A.B.C.D.
2、(4分)下列命题中的真命题是( )
A.有一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.对角线互相垂直平分的四边形是正方形
D.有一组邻边相等的平行四边形是菱形
3、(4分)计算的正确结果是( )
A.B.1C.D.﹣1
4、(4分)如图,四边形ABCD是正方形,点E、F分别在AD、CD上,AF、BE相交于点G,且AF=BE,则下列结论不正确的是:( )
A.AF⊥BEB.BG=GFC.AE=DFD.∠EBC=∠AFD
5、(4分)在矩形中,下列结论中正确的是( )
A.B.C.D.
6、(4分)如图,已知直线y=x与双曲线y= (k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
A.8B.32C.10D.15
7、(4分)如图,已知矩形中,与相交于,平分交于,,则的度数为( )
A.B.C.D.
8、(4分)如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6B.5C.4D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系中,菱形的顶点在轴上,顶点在反比例函数的图象上,若对角线,则的值为__________.
10、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.
11、(4分)如图在中,,,,是边上的两点,且满足,若,,,的长是__________.
12、(4分)已知是一次函数,则__________.
13、(4分)已知整数x、y满足+3=,则的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)某文具店准备购进甲、乙两种文具袋,已知甲文具袋每个的进价比乙每个进价多2元,经了解,用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等.
(1)分别求甲、乙两种文具袋每个的进价是多少元?
(2)若该文具店用1200元全部购进甲、乙两种文具袋,设购进甲x个,乙y个.
①求y关于x的关系式.
②甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,求w关于x的关系式,并说明如何进货该文具店所获利润最大,最大利润是多少?
15、(8分)如图,甲乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东航行,乙船向南偏东航行,3小时后,甲船到达C岛,乙船到达B岛,若C、B两岛相距102海里,问乙船的航速是多少?
16、(8分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.
求证:四边形AGCH是平行四边形.
17、(10分)如图所示,将置于平面直角坐标系中,,,.
(1)画出向下平移5个单位得到的,并写出点的坐标;
(2)画出绕点顺时针旋转得到的,并写出点的坐标;
(3)画出以点为对称中心,与成中心对称的,并写出点的坐标.
18、(10分)如图,在平行四边形中,E是AB延长线上的一点,DE交BC于点F.已知,,求△CDF的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若关于x的一元二次方程有两个不相等的实数根,则m的取值范围________
20、(4分)若,则的取值范围为_____.
21、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.
22、(4分)如图,已知四边形ABCD是平行四边形,将边AD绕点D逆时针旋转60°得到DE,线段DE交边BC于点F,连接BE.若∠C+∠E=150°,BE=2,CD=2,则线段BC的长为_____.
23、(4分)如果,那么的值是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,
(1)求b,m的值;
(2)求△ABP的面积;
(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.
25、(10分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:
(1)参加这次跳绳测试的共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是 ;
(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
26、(12分)如图,在四边形ABCD中,AB∥CD,∠BAD=90°,AB=5,BC=12,AC=1.
求证:四边形ABCD是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据列式计算即可.
【详解】
∵,
∴=.
故选B.
本题考查了新定义运算及二次根式的性质,理解是解答本题的关键.
2、D
【解析】
根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.
【详解】
A、有两组对边平行的四边形是平行四边形,所以A选项错误;
B、有一个角是直角的平行四边形是矩形,所以B选项错误;
C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;
D、有一组邻边相等的平行四边形是菱形,所以D选项正确;
故选:D.
本题是对特殊四边形判断的考查,熟练掌握平行四边形,矩形,正方形,菱形的判断知识是解决本题的关键.
3、A
【解析】
4、B
【解析】
由四边形ABCD是正方形,可得AD=BA,∠D=∠BAE=90°,利用直角三角形全等的判定(HL)可得Rt△ABE≌Rt△DAF,可得出边角关系,对应选项逐一验证即可.
【详解】
∵四边形ABCD是正方形,
∴ AD=AB,∠D=∠BAE=90°,
又AF=BE,
∴Rt△ABE≌Rt△DAF(HL),
∴∠ABE=∠DAF,∠AEB=∠DFA,AE=DF,因此C选项正确,
又∵∠DAF+∠DFA =90°,
∴∠DAF+∠AEB=90°,
∴∠AGE=90°,即AF⊥BE,因此A选项正确,
∵∠EBC+∠ABE=90°,∠ABE+∠AEB=90°,∠AEB=∠AFD,
∴∠EBC=∠AFD,因此D选项正确,
∵BE=AF,若BG=GF,则AG=GE,可得,∠DAF=45°,则AF应该为正方形的对角线,从图形来看,AF不是对角线,所以与题目矛盾,所以B选项错误,
故选:B.
考查了正方形的性质,全等三角形的判定和性质,余角的定义,垂直的定义,熟记几何图形的概念,判定和性质定理是解题的关键,注意题目要求选不正确的.
5、C
【解析】
根据相等向量及向量长度的概念逐一进行判断即可.
【详解】
相等向量:长度相等且方向相同的两个向量 .
A. ,故该选项错误;
B. ,但方向不同,故该选项错误;
C. 根据矩形的性质可知,对角线互相平分且相等,所以,故该选项正确;
D. ,故该选项错误;
故选:C.
本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.
6、D
【解析】
点A的横坐标为4,将x=4代入y= x,得y=2.
∴点A的坐标为(4,2).
∵点A是直线y=x与双曲线y=(k>0)的交点,
∴k=4×2=8,即y=.
将y=8代入y=中,得x=1.
∴点C的坐标为(1,8).
如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.
易得S长方形DMON=32,S△ONC=4,
S△CDA=9,S△OAM=4.
∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.
7、B
【解析】
因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD, 因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.
【详解】
解:∵四边形ABCD为矩形,且DE平分∠ADC,
∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,
∴CE=CD,
∵∠BDE=15°,
∴∠CDO=45°+15°=60°,
∵OD=OC,
∴△CDO为等边三角形,即OC=OD=CD,
∴CE=OC,
∴∠COE=∠CEO,
而∠OCE=90°-60°=30°,
∴∠COE=∠CEO==75°.
故选B.
本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.
8、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1
【解析】
先根据菱形的性质求出C点坐标,再把C点坐标代入反比例函数的解析式即可得出k的值.
【详解】
解:∵菱形的两条对角线的长分别是6和4,
∴C(-3,4),
∵点C在反比例函数y=的图象上,
∴k=(-3)×4=-1.
故答案为:-1
本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定满足此函数的解析式.
10、1
【解析】
分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.
详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.
∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.
故答案为1.
点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.
11、
【解析】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如下图,利用等腰直角三角形的性质得,利用旋转的性质得,,则,在中利用勾股定理可计算出,然后再根据证明三角形即可得到.
【详解】
以点B为旋转中心,将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处),如图
按顺时针方向旋转得到
在中,
将按顺时针方向旋转得到 (点C与点A重合,点E到点E'处)
,
,即
在和中
∴.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和勾股定理.
12、
【解析】
根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.
【详解】
解;由y=(m-1)xm2−8+m+1是一次函数,得
,
解得m=-1,m=1(不符合题意的要舍去).
故答案为:-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
13、6或2或2
【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.
【详解】
∵+3==6,
又x、y均为整数,
∴=,3=0或=3,3=3或=0,3=,
∴x=72,y=0或x=18,y=2或x=0,y=8,
∴=6或2或2.
故答案为:6或2或2.
本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)乙文件袋每个进价为6元,则甲文件袋每个为8元;(2)①;②w=﹣2x+600,甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.
【解析】
(1)关键语是“用120元购进的甲文具袋与用90元购进的乙文具袋的数量相等”可根据此列出方程.
(2)①根据题意再由(1)可列出方程
②根据甲每个的售价为10元,乙每个的售价为9元,且在进货时,甲的购进数量不少于60个,若这批文具袋全部售完可获利w元,可列出方程,求出解析式再根据函数图象,分析x的取值即可解答
【详解】
解:(1)设乙文件袋每个进价为x元,则甲文件袋每个为(x+2)元,
根据题意得:
解得x=6
经检验,x=6是原分式方程的解
∴x+2=8
答:乙文件袋每个进价为6元,则甲文件袋每个为8元
(2)①根据题意得:8x+6y=1200
y=200﹣
②w=(10﹣8)x+(9﹣6)y=2x+3(200﹣)=﹣2x+600
∵k=﹣2<0
∴w随x的增大而减小
∵x≥60,且为整数
∴当x=60时,w有最大值为,w=60×(﹣2)+600=480
此时,y=200﹣×60=120
答:甲文具袋进60个,乙文件袋进120个,获得利润最大为480元.
此题考查二元一次方程的应用和分式方程的应用,解题关键在于列出方程
15、30(海里/时)
【解析】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形,可以通过勾股定理计算出AB的长度,然后求乙船的速度.
【详解】
通过两船的航线角度可知,∠CAB=90°,则三角形ABC为直角三角形
又AC为甲船航行的路程,则AC=16×3=48
由可知:
AB=
所以乙船的航速为90÷3=30(海里/时)
故答案为30(海里/时)
本题考察了方位角的判断,构造出直角三角形,运用勾股定理解题,需要清楚的是勾股定理是指,直角三角形中两个直角边的平方和等于斜边的平方.
16、证明见解析.
【解析】
法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;
法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.
证明:在□ABCD中,AD∥BC,AB∥CD,
∵CF⊥AD,∴CF⊥BC,
∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,
∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,
∴∠AGB=∠DHC,
∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,
∴AG=CH,
∴四边形AGCH是平行四边形;
法2:连接AC,与BD相交于点O,
在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,
∴∠ABG=∠CDH,
∵CF⊥AD,AE⊥BC,
∴∠AEB=∠CFD=90°,
∴∠BAG=∠DCH,
∴△ABG≌CDH,
∴BG=DH,
∴BO﹣BG=DO﹣DH,
∴OG=OH,
∴四边形AGCH是平行四边形.
“点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.
17、(1)图见解析,(-1,-1);
(2)图见解析,(4,1);
(3)图见解析,(1,-4);
【解析】
(1)根据平移的性质画出点A、B、C平移后的对应点A1、B1、C1即可得到;
(2)利用网格特点,根据旋转的性质画出点A、B、C旋转后的对应点A2、B2、C2即可得到;
(3)根据关于原点对称的点的坐标特征写出A3、B3、C3的坐标,然后描点即可。
【详解】
(1)如图,为所作,点的坐标为(-1,-1);
(2)如图,为所作,点的坐标为(4,1);
(3)如图,为所作,点的坐标为(1,-4);
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.
18、解:∵四边形ABCD是平行四边形,
∴AE∥DC,
∴△BEF∽△CDF
∵AB=DC,BE:AB=2:3,
∴BE:DC=2:3
∴
∴
【解析】
试题分析:根据平行四边形的性质,可证△BEF∽△CDF,由BE:AB=2:3,可证BE:DC=2:3,根据相似三角形的性质,可证
考点:相似三角形的判定与性质;平行四边形的性质
点评:本题主要考查了相似三角形的判定和性质,平行四边形的性质等知识点
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据∆>0列式求解即可.
【详解】
由题意得
4-8m>0,
∴.
故答案为:.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
20、
【解析】
根据二次根式的性质可知,开方结果大于等于0,于是1-a≥0,解不等式即可.
【详解】
∵,
∴1−a≥0,
∴a≤1,
故答案是a≤1.
本题考查二次根式的性质与化简,能根据任意一个非负数的算术平方根都大于等于0得出1−a≥0是解决本题的关键.
21、1
【解析】
平移的距离为线段BE的长求出BE即可解决问题;
【详解】
∵BC=EF=5,EC=3,
∴BE=1,
∴平移距离是1,
故答案为:1.
本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.
22、2
【解析】
过C作CM⊥DE于M,过E作EN⊥BC于N,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠BFE=∠DFC=∠ADE,根据旋转的性质得到∠BFE=∠DFC=∠ADE=60°,推出∠DCM=∠EBN,根据相似三角形的性质得到CM=BN,DM=EN,得到FM=BN,设FM=BN=x,EN=y,则DM=y,CM=x,根据勾股定理即可得到结论.
【详解】
解:过C作CM⊥DE于M,过E作EN⊥BC于N,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠BFE=∠DFC=∠ADE,
∵将边AD绕点D逆时针旋转60°得到DE,
∴∠BFE=∠DFC=∠ADE=60°,
∴∠FCM=∠FBN=30°,
∵∠DCF+∠BEF=150°,
∴∠DCM+∠BEN=90°,
∵∠BEN+∠EBN=90°,
∴∠DCM=∠EBN,
∴△DCM∽△EBN,
∴==,
∴CM=BN,DM=EN,
在Rt△CMF中,CM=FM,
∴FM=BN,
设FM=BN=x,EN=y,则DM=y,CM=x,
∴CF=2x,EF=y,
∵BC=AD=DE,
∴y+x+y=2x+y+x,
∴x=y,
∵x2+y2=4,
∴y=,x=,
∴BC=2,
故答案为:2.
【点评】
本题考查了平行四边形的性质,相似三角形的判定和性质,勾股定理,旋转的性质,正确的作出辅助线是解题的关键.
23、
【解析】
由得到再代入所求的代数式进行计算.
【详解】
∵,
∴,
∴,
故答案为:.
此题考查分式的求值计算,根据已知条件求出m与n的等量关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)m=-1;(2);(3)a=或a=.
【解析】
(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
【详解】
(1)把点P(1,b)代入y=2x+1,
得b=2+1=3,
把点P(1,3)代入y=mx+4,得m+4=3,
∴m=-1;
(2)∵L1:y=2x+1 L2:y=-x+4,
∴A(-,0)B(4,0)
∴;
(3)解:直线x=a与直线l1的交点C为(a,2a+1)
与直线l2的交点D为(a,-a+4).
∵CD=2,
∴|2a+1-(-a+4)|=2,
即|3 a-3|=2,
∴3 a-3=2或3 a-3=-2,
∴a=或a=.
本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据解析式求得与坐标轴的交点;(3)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
25、 (1)50;(2)见解析;(3)72°;(4)96人.
【解析】
(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;
(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;
(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;
(4)利用样本估计总体进而利用“优秀”所占比例求出即可.
【详解】
(1)由扇形统计图和条形统计图可得:
参加这次跳绳测试的共有:20÷40%=50(人);
故答案为:50;
(2) 由(1)的优秀的人数为:50−3−7−10−20=10人,
(3) “中等”部分所对应的圆心角的度数是:×360°=72°,
故答案为:72°;
(4)全年级优秀人数为:(人).
此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.
26、详见解析.
【解析】
已知AB∥CD,∠BAD=90°,由平行线的性质可得∠ADC=90°,在△ABC中,AB=5,BC=12,AC=1,根据勾股定理的逆定理得出∠B=90°,即可得四边形ABCD是矩形.
【详解】
证明:四边形ABCD中,AB∥CD,∠BAD=90°,
∴∠ADC=90°,
又∵△ABC中,AB=5,BC=12,AC=1,
∵12=52+122,
∴△ABC是直角三角形,且∠B=90°,
∴四边形ABCD是矩形.
题号
一
二
三
四
五
总分
得分
2024年江苏省高邮市车逻镇初级中学数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年江苏省高邮市车逻镇初级中学数学九年级第一学期开学质量检测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江苏省高邮市车逻镇初级中学数学九上期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏省高邮市车逻镇初级中学数学九上期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列方程中,是一元二次方程的是,方程x2=x的解是等内容,欢迎下载使用。
2023-2024学年江苏省高邮市车逻镇初级中学数学八上期末综合测试试题含答案: 这是一份2023-2024学年江苏省高邮市车逻镇初级中学数学八上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,平分,,,则的长为,下列图形中,下列因式分解正确的是,下列变形从左到右一定正确的是等内容,欢迎下载使用。