2024年江苏省连云港市岗埠中学数学九年级第一学期开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算的结果是( )
A.B.C.D.
2、(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为( )
A.2B.4C.D.3
3、(4分)将下列多项式因式分解,结果中不含有因式(x﹣2)的是( )
A.x2﹣4B.x3﹣4x2﹣12x
C.x2﹣2xD.(x﹣3)2+2(x﹣3)+1
4、(4分)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为【 】
A.6cm B.4cm C.3cm D.2cm
5、(4分)将方程x2+4x+1=0配方后,原方程变形为( )
A.(x+2)2=3B.(x+4)2=3C.(x+2)2=﹣3D.(x+2)2=﹣5
6、(4分)要使二次根式有意义,则的取值范围是( )
A.B.C.D.
7、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是( )
A.8B.6C.4D.10
8、(4分)下列字母中既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为________.
10、(4分)下面是某校八年级(1)班一组女生的体重(单位:kg)36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.
11、(4分)计算:____.
12、(4分)函数y=kx的图象经过点(1,3),则实数k=_____.
13、(4分)某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.
三、解答题(本大题共5个小题,共48分)
14、(12分) (1)计算:(1﹣)÷;
(2)化简求值:(﹣)÷,其中m=﹣1
15、(8分)已知:如图,正比例函数y=kx的图象经过点A,
(1)请你求出该正比例函数的解析式;
(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;
(3)请你判断点P(﹣,1)是否在这个函数的图象上,为什么?
16、(8分)如图,在中,点,分别在,上,且,求证:四边形是平行四边形.
17、(10分)如图,在四边形ABCD中,∠ABC=90°,E、F分别是AC、CD的中点,AC=8,AD=6,∠BEF=90°,求BF的长.
18、(10分)随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车。我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.
(1)求该品牌新能源汽车销售量的月均增长率;
(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.
20、(4分)一次函数不经过第_________象限;
21、(4分)计算:(2019﹣)0+(﹣1)2017+|2﹣π|+=_____.
22、(4分)平面直角坐标系中,点M(-3,-4)到x轴的距离为______________________.
23、(4分)一组数据,,,,,的方差是_________.
二、解答题(本大题共3个小题,共30分)
24、(8分)若b2﹣4ac≥0,计算:
25、(10分)已知关于的方程
(1)若请分别用以下方法解这个方程:
①配方法;
②公式法;
(2)若方程有两个实数根,求的取值范围.
26、(12分)在平行四边形中,的垂直平分线分别交于两点,交于点,试判断四边形的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据二次根式性质求解.
【详解】
根据得
=3
故答案为:A
考核知识点:算术平方根性质.理解定义是关键.
2、B
【解析】
由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,OA=AC,OB=BD,AC=BD,
∴OA=OB,
∵∠AOD=120°,
∴∠AOB=60°,
∴△AOB是等边三角形,
∴OA=AB=2,
∴AC=2OA=4,
∴BC=,
∴矩形的面积=AB•BC=4;
故选B.
本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
3、B
【解析】
试题解析:A. x2-4=(x+2)(x-2) ,含有因式(x-2),不符合题意;
B. x3-4x2-12x=x(x+2)(x-6),不含有因式(x-2),正确;
C. x2-2x=x(x-2),含有因式(x-2),不符合题意;
D. (x-3)2+2(x-3)+1=x2-4x+4=(x-2)2,含有因式(x-2),不符合题意,
故选B.
4、C
【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,
∵OE∥DC,∴OE是△BCD的中位线。∴OE=CD=3cm。故选C。
5、A
【解析】
配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
【详解】
∵x2+4x+1=0,
∴x2+4x=−1,
∴x2+4x+4=−1+4,
∴(x+2) 2=3.
故选:A.
此题考查解一元二次方程-配方法,掌握运算法则是解题关键
6、D
【解析】
根据二次根式有意义的条件进行求解即可.
【详解】
∵二次根式有意义
∴
解得
故答案为:D.
本题考查了二次根式的问题,掌握二次根式有意义的条件是解题的关键.
7、A
【解析】
由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.
【详解】
解:连接OA、OC、OD、OB,如图:
由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,
∵S△AOC=S△AOE+S△COE,
∴AC•OE=×4OE=2OE=(k1﹣k2)…①,
∵S△BOD=S△DOF+S△BOF,
∴BD•OF=×(EF﹣OE)=×2(6﹣OE)=6﹣OE=(k1﹣k2)…②,
由①②两式解得OE=2,
则k1﹣k2=1.
故选:A.
本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.
8、A
【解析】
根据中心对称图形及轴对称图形的概念即可解答.
【详解】
选项A是轴对称图形,也是中心对称图形;
选项B是轴对称图形,不是中心对称图形;
选项C不是轴对称图形,也不是中心对称图形;
选项D不是轴对称图形,是中心对称图形.
故选A.
本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
分析:根据三角形中位线定理求出第二个三角形的周长、第三个三角形的周长,总结规律,得到答案.
详解:根据三角形中位线定理得到第二个三角形三边长是△ABC的三边长的一半,即第二个三角形的周长为,则第三个三角形的周长为,∴第2018个三角形的周长为;
故答案为:.
点睛:本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10、
【解析】
分别利用平均数、众数及中位数的定义求解后即可得出答案.
【详解】
解:将数据重新排列为33、35、36、40、42、42、45,
所以这组数据的平均数为,
众数为、中位数为,
故答案为:、、.
此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.
11、1
【解析】
根据二次根式的乘法运算法则进行计算即可.
【详解】
解:.
故答案为:1.
本题考查了二次根式的乘法运算,掌握基本运算法则是解题的关键.
12、3
【解析】
试题分析:直接把点(1,3)代入y=kx,然后求出k即可.
解:把点(1,3)代入y=kx,
解得:k=3,
故答案为3
【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
13、2
【解析】
设至少答对x道题,总分才不会低于1,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于2分,可列不等式求解.
【详解】
解:设至少答对x道题,总分才不会低于1,
根据题意,得
5x-3(20-x-3)≥2,
解之得x≥14.5.
答:至少答对2道题,总分才不会低于1.
故答案是:2.
本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)x+1; (2)m-3,-4.
【解析】
分析:
(1)按照分式混合运算的相关运算法则进行计算即可;
(2)先按照分式混合运算的相关运算法则将原式化简,再代值计算即可.
详解:
(1)原式=
=
=;
(2)原式=
=,
当m=-1时,
原式=-1-3=-4.
点睛:熟记“分式混合运算的相关运算法则”是解答本题的关键.
15、(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析.
【解析】
(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=- 代入所求的解析式,求得y的值,比较即可.
【详解】
(1)由图可知点A(﹣1,2),代入y=kx得:
﹣k=2,k=﹣2,
则正比例函数解析式为y=﹣2x;
(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,
解得:m=﹣1;
(3)当x=﹣时,y=﹣2×(﹣)=3≠1,
所以点P不在这个函数图象上.
本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可.
16、见解析.
【解析】
先根据平行四边形的性质得AB∥CD,则利用AE=CF,则可判断四边形AECF为平行四边形.
【详解】
四边形是平行四边形,
.
又`
四边形是平行四边形.
本题考查平行四边形的性质和判定,能灵活运用定理进行推理是解题的关键.
17、2
【解析】
根据三角形中位线定理和直角三角形斜边上的中线推知BE=4,EF=1,再由勾股定理计算BF的长度即可.
【详解】
∵E、F分别是AC、CD的中点,
∴EF=AD,
∵AD=6,
∴EF=1.
∵∠ABC=90°,E是CA的中点,
∴BE=AC=4,
∵∠BEF=90°,
∴BF===2.
本题考查了直角三角形斜边上的中线,根据三角形中位线定理和直角三角形斜边上的中线推知△BEF两直角边的长是解题的关键.
18、(1)该品牌新能源汽车销售量的月均增长率为;(2)盈利3276000元.
【解析】
(1)设该品牌电动自行车销售量的月均增长率为x.等量关系为:1月份的销售量×(1+增长率)2=3月份的销售量,把相关数值代入求解即可.
(2)根据(1)求出增长率后,再计算出二月份的销量,即可得到答案.
【详解】
(1)设该品牌新能源汽车销售量的月均增长率x,根据题意列方程
解得,(舍去)
(2)
答:(1)该品牌新能源汽车销售量的月均增长率为;(2)共盈利3276000元.
此题考查一元二次方程的应用,解题关键在于根据题意列出方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.26
【解析】
首先根据平均数算出x的值,然后利用方差的公式进行计算.
【详解】
解得:x=3
故方差为0.26
本题考查数据方差的计算,务必记住方差计算公式为:
20、三
【解析】
根据一次函数的图像与性质即可得出答案.
【详解】
∵一次函数解析式为:y=-x+1
其中k=-1<0,b=1>0
∴函数图像经过一、二、四象限,不经过第三象限
故答案为:三.
本题考查的是一次函数的图像与性质,熟练掌握一次函数的图像与性质是解决本题的关键.
21、π+2
【解析】
根据零指数幂,负整数指数幂,绝对值的性质计算即可.
【详解】
原式=.
故答案为:.
本题主要考查实数的混合运算,掌握实数的混合运算的顺序和法则是解题的关键.
22、1
【解析】
根据点到x轴的距离是其纵坐标的绝对值解答即可.
【详解】
点P(﹣3,-1)到x轴的距离是其纵坐标的绝对值,所以点P(﹣3,-1)到x轴的距离为1.
故答案为:1.
本题考查了点的坐标的几何意义,明确点的坐标与其到x、y轴的距离的关系是解答本题的关键.
23、
【解析】
先求得数据的平均数,然后代入方差公式计算即可.
【详解】
解:数据的平均数=(2-3+3+6+4)=2,
方差.
故答案为.
本题考查方差的定义,牢记方差公式是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
利用平方差公式化简,然后去括号合并后约分即可;
【详解】
解:原式=
=
=
=;
本题主要考查了二次根式的化简求值,掌握二次根式的化简求值是解题的关键.
25、(1)①,见解析;②,见解析;(2)
【解析】
(1)①利用配方法解方程;
②先计算判别式的值,然后利用求根公式解方程;
(2)利用判别式的意义得到△=(-5)2-4×(3a+3)≥0,然后解关于a的不等式即可.
【详解】
解:当时,原方程为:
∴,
∴,
∴;
,
∴;
方程有两个实数根,
;
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解一元二次方程.
26、四边形是菱形,理由见解析。
【解析】
根据题意先证明四边形是平行四边形,再根据垂直平分线的性质即可求解.
【详解】
解:四边形是菱形,理由如下:
四边形是平行四边形
又 垂直平分
在和中
四边形是平行四边形
又
四边形是菱形
此题主要考查菱形的判定,解题的关键是熟知全等三角形的判定与性质及菱形的判定定理.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年江苏省仪征市月塘中学数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份2024-2025学年江苏省仪征市月塘中学数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年江苏省连云港市沙河中学数学九年级第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省连云港市岗埠中学2023-2024学年数学九年级第一学期期末考试试题含答案: 这是一份江苏省连云港市岗埠中学2023-2024学年数学九年级第一学期期末考试试题含答案,共7页。试卷主要包含了两个相邻自然数的积是1等内容,欢迎下载使用。