2024年江苏省南通市第一九年级数学第一学期开学综合测试模拟试题【含答案】
展开这是一份2024年江苏省南通市第一九年级数学第一学期开学综合测试模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)等边三角形的边长为2,则该三角形的面积为( )
A.B.2C.3D.4
2、(4分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO.则BE的长度为( )
A.B.C.D.
3、(4分)下列给出的四个点中,不在直线y=2x-3上的是 ( )
A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5)
4、(4分)如图,O是▱ABCD对角线的交点,,,,则的周长是
A.17B.13C.12D.10
5、(4分)如图①,正方形中,点以每秒2cm的速度从点出发,沿的路径运动,到点停止.过点作与边(或边)交于点的长度与点的运动时间(秒)的函数图象如图②所示.当点运动3秒时,的面积为( )
A.B.C.D.
6、(4分)下列各组数中,能构成直角三角形的是( )
A.4,5,6B.1,1,C.6,8,11D.5,12,23
7、(4分)在一个直角三角形中,已知两直角边分别为6cm,8cm,则下列结论不正确的是( )
A.斜边长为10cmB.周长为25cm
C.面积为24cm2D.斜边上的中线长为5cm
8、(4分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有( )
A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为______.
10、(4分)如图,将一块边长为 12 cm 正方形纸片 ABCD 的顶点 A 折叠至DC 边上的 E 点,使 DE=5,折痕为 PQ,则 PQ 的长为_________cm.
11、(4分)函数与的图象如图所示,则的值为____.
12、(4分)对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.
13、(4分)对于实数,,定义新运算“”:.如.若,则实数的值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,矩形ABCD中,对角线AC与BD相交于点O.
(1)写出与相反的向量______;
(2)填空:++=______;
(3)求作:+(保留作图痕迹,不要求写作法).
15、(8分)计算:(-)(+)--|-3|
16、(8分)商场代售某品牌手机,原来每台的售价是3000元,一段时间后为了清库存,连续两次降价出售,现在的售价是1920元,求两次降价的平均降价率是多少?
17、(10分)申遗成功后的杭州,在国庆黄金周旅游市场中的知名餐饮受游客追捧,西湖景区附近的A,B两家餐饮店在这一周内的日营业额如下表:
(1)要评价两家餐饮店日营业额的平均水平,你选择什么统计量?求出这个统计量;
(2)分别求出两家餐饮店各相邻两天的日营业额变化数量,得出两组新数据,然后求出两组新数据的方差,这两个方差的大小反映了什么?(结果精确到0.1)
(3)你能预测明年黄金周中哪几天营业额会比较高吗?说说你的理由.
18、(10分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.
20、(4分)某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 _________________ 米.
21、(4分)已知,则比较大小2_____3(填“<“或“>”)
22、(4分)在△ABC中,AB=12,AC=5,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则PM的最小值为_____.
23、(4分)若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,两个全等的直角三角板ABC和DEF重叠在一起,其中∠ACB=∠DFE=90°,∠A=60°,AC=1,固定△ABC,将△DEF沿线段AB向右平移(即点D在线段AB上),回答下列问题:
(1)如图2,连结CF,四边形ADFC一定是 形.
(2)连接DC,CF,FB,得到四边形CDBF.
①如图3,当点D移动到AB的中点时,四边形CDBF是 形.其理由?
②在△DEF移动过程中,四边形CDBF的形状在不断改变,但它的面积不变化,其面积为 .
25、(10分)如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)直接写出点M的坐标为 ;
(2)求直线MN的函数解析式;
(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.
26、(12分)解一元二次方程:
(1)6x2﹣x﹣2=0
(2)(x+3)(x﹣3)=3
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:如图,作CD⊥AB,则CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=1,所以,在直角△ADC中,利用勾股定理,可求出CD的长,代入面积计算公式,解答出即可;
详解:作CD⊥AB,
∵△ABC是等边三角形,AB=BC=AC=2,
∴AD=1,
∴在直角△ADC中,
CD===,
∴S△ABC=×2×=;
故选A.
点睛:本题主要考查了等边三角形的性质及勾股定理的应用,根据题意,画出图形可利于解答,体现了数形结合思想.
2、C
【解析】
利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.
【详解】
∵正方形ABCD的边长为,
∴OB=OC=BC=×=1,OB⊥OC,
∵CE=OC,
∴OE=2,
在Rt△OBE中,BE=.
故选C.
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.
3、D
【解析】
只需把每个点的横坐标即x的值分别代入y=2x-3,计算出对应的y值,然后与对应的纵坐标比较即可
A、当x=1时,y=-1,(1,-1)在直线y=2x-3上;
B、当x=0时,y=-3,(0,-3)在直线y=2x-3上;
C、当x=2时,y=1,(2,1)在直线y=2x-3上;
D、当x=-1时,y=-5,(-1,5)不在直线y=2x-3上.
故选D.
4、C
【解析】
利用平行四边形的性质和勾股定理易求BO的长即可.
【详解】
∵▱ABCD的对角线AC与BD相交于点O,
∴AO=CO=3
∵AB⊥AC,AB=4,AC=6,
∴BO==1.
∴△AOB的周长=AB+AO+BO=4+3+1=12,
故选C.
本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.
5、B
【解析】
由图②知,运动2秒时,,距离最长,再根据运动速度乘以时间求得路程,可得点P的位置,根据线段的和差,可得CP的长,最后由即可求得答案.
【详解】
由图②知,运动2秒时,,的值最大,
此时,点P与点B重合,则,
∵四边形为正方形,
则,
∴,
由题可得:点P运动3秒时,则P点运动了6cm,
此时,点P在BC上,如图:
∴cm,
∴点P为BC的中点,
∵PQ∥BD,
∴点Q为DC的中点,
∴
.
故选:B.
本题考查了动点问题的函数图象以及平行线的性质、正方形的性质、三角形中位线定理,由图②知,运动2秒时,,求得正方形的边长是解题的关键.
6、B
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.
【详解】
解:A、,故不是直角三角形,错误;
B、 ,故是直角三角形,正确;
C、 故不是直角三角形,错误;
D、故不是直角三角形,错误.
故选:B.
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、B
【解析】
试题解析:∵在一个直角三角形中,已知两直角边分别为6cm,8cm,
∴直角三角形的面积=×6×8=24cm2,故选项C不符合题意;
∴斜边 故选项A不符合题意;
∴斜边上的中线长为5cm,故选项D不符合题意;
∵三边长分别为6cm,8cm,10cm,
∴三角形的周长=24cm,故选项B符合题意,
故选B.
点睛:直角三角形斜边的中线等于斜边的一半.
8、D
【解析】
∵A,B是不同象限的点,而正比例函数的图象要不在一、三象限,要不在二、四象限,
∴由点A与点B的横纵坐标可以知:
点A与点B在一、三象限时:横纵坐标的符号应一致,显然不可能;
点A与点B在二、四象限:点B在二象限得n<0,点A在四象限得m<0.
故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-2x+1
【解析】
分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y-y0=k(x-x0)求得解析式即可.
详解:∵直线AB是直线y=-2x平移后得到的,
∴直线AB的k是-2(直线平移后,其斜率不变)
∴设直线AB的方程为y-y0=-2(x-x0) ①
把点(m,n)代入①并整理,得
y=-2x+(2m+n) ②
∵2m+n=1 ③
把③代入②,解得y=-2x+1
即直线AB的解析式为y=-2x+1.
点睛:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.
10、13
【解析】
先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.
【详解】
过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=
故答案是:13.
本题主要考查正方形中的折叠问题, 正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.
11、1
【解析】
将x=1代入可得交点纵坐标的值,再将交点坐标代入y=kx可得k.
【详解】
解: 把x=1代入得:y=1,
∴与的交点坐标为(1,1),
把x=1,y=1代入y=kx得k=1.
故答案是:1.
本题主要考查两条直线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式.
12、46≤x<1
【解析】
分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.
详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6
解得:46≤x<1.
故答案为46≤x<1.
点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.
13、6或-1
【解析】
根据新定义列出方程即可进行求解.
【详解】
∵
∴x2-5x=6,
解得x=6或x=-1,
此题主要考查一元二次方程的解,解题的关键是根据新定义列出方程.
三、解答题(本大题共5个小题,共48分)
14、 (1) ,;(2);(3)见解析.
【解析】
(1)观察图形直接得到结果;
(2)由+=,+=即可得到答案;
(3)根据平行四边形法则即可求解.
【详解】
解:(1)与相反的向量有,.
(2)∵+=,+=,
∴++=.
(3)如图,作平行四边形OBEC,连接AE,即为所求.
故答案为(1) ,;(2);(3)见解析.
本题考查了平面向量,平面向量知识在初中数学教材中只有沪教版等极少数版本中出现.
15、-
【解析】
分析:先进行二次根式的乘法法则运算,化简二次根式和去绝对值,然后化简后合并即可.
详解:原式=5-2-2-(3-)
=3-2-3+
=-.
点睛:本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
16、20%
【解析】
设平均每次降价率为x,那么原价格×(1-x)2=两次降价后的现价,把相应数值代入即可求解.
【详解】
解:设平均每次降价率为x,依题意得:
,
解得:,(不合题意舍去),
答:平均每次的降价率为20%.
本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.
17、(1)选择平均数,A店的日营业额的平均值是2.5百万元,B店的日营业额的平均值是2.5百万元;(2)A组新数据的方差约为1.1,B组新数据的方差约为1.6;(3)答案见解析.
【解析】
试题分析:(1)在数据差别不是很大的情况下评价平均水平一般采用平均数;
(2)分别用每一个数据减去其平均数,得到新数据后计算其方差后比较即可;
(3)用今年的数据大体反映明年的数据即可.
解:(1)选择平均数.
A店的日营业额的平均值是×(1+1.6+3.5+4+2.7+2.5+2.2)=2.5(百万元),
B店的日营业额的平均值是×(1.9+1.9+2.7+3.8+3.2+2.1+1.9)=2.5(百万元).
(2)1.6,1.9,1.5,-1.3,-1.2,-1.3;
B组数据的新数为
1,1.8,1.1,-1.6,-1.1,-1.2,
∴A组新数据的平均数
xA=×(1.6+1.9+1.5-1.3-1.2-1.3)
=1.2(百万元),
B组新数据的平均数
xB=×(1+1.8+1.1-1.6-1.1-1.2)
=1(百万元).
∴A组新数据的方差s=×[(1.2-1.6)2+(1.2-1.9)2+(1.2-1.5)2+(1.2+1.3)2+(1.2+1.2)2+(1.2+1.3)2]≈1.1,
B组新数据的方差
s=×(12+1.82+1.12+1.62+1.12+1.22)
≈1.6.
这两个方差的大小反映了A,B两家餐饮店相邻两天的日营业额的变化情况,并且B餐饮店相邻两天的日营业额的变化情况比较小.
(3)观察今年黄金周的数据发现今年的3号、4号、5号营业额较高,故明年的3号、4号、5号营业额可能较高.
点睛:本题考查了算术平均数和方差的计算,算术平均数的计算公式是:,方差的计算公式为:,根据公式求解即可.
18、原计划每天能完成125套.
【解析】
试题解析:
设原计划每天能完成套衣服,由题意得
解得:
经检验,是原分式方程的解.
答:原计划每天能完成125套.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.
【详解】
解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为1时,根据题意得(1+1+x+8)÷4=1,
解得x=12,
将这组数据从小到大的顺序排列8,1,1,12,
处于中间位置的是1,1,
所以这组数据的中位数是(1+1)÷2=1.
故答案为1
本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
20、1.
【解析】
在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.
【详解】
解:设旗杆高度为x,则
,
解得x=1.
故答案为:1.
本题考查相似三角形的应用,熟知同一时刻物高与影长成正比是解题关键.
21、<
【解析】
要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.
【详解】
解:∵ +=0,
∴a﹣3=0,2﹣b=0,
解得a=3,b=2,
∴2 , ,
∴ .
故答案为:<
本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.
22、
【解析】
根据题意可证△ABC是直角三角形,则可以证四边形AEPF是矩形,可得AP=EF,根据直角三角形斜边上中线等于斜边一半,可得AP=EF=2PM,则AP值最小时,PM值最小,根据垂线段最短,可求AP最小值,即可得PM的最小值.
【详解】
解:连接AP,
∵AB2+AC2=169,BC2=169
∴AB2+AC2=BC2
∴∠BAC=90°,且PE⊥AB,PF⊥AC
∴四边形AEPF是矩形
∴AP=EF,∠EPF=90°
又∵M是EF的中点
∴PM=EF
∴当EF值最小时,PM值最小,即当AP值最小时,PM值最小.
根据垂线段最短,即当AP⊥BC时AP值最小
此时S△ABC=AB×AC=BC×AP
∴AP=
∴EF=
∴PM=
故答案为
本题考查了矩形的判定与性质,勾股定理逆定理,以及垂线段最短,关键是证EF=AP
23、45
【解析】
由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.
【详解】
解:如图所示:
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠B+∠C=180°,
∵∠B:∠C=1:3,
∴∠C=3∠B,
∴∠B+4∠B=180°,
解得:∠B=45°,
故答案为:45°.
本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)平行四边;(2)①见解析;②
【解析】
(1)根据平移的性质即可证明四边形ADFC是平行四边形;
(2)①根据菱形的判定定理即可求解;
②根据四边形CDBF的面积=DF×BC即可求解.
【详解】
解:(1)∵平移
∴AC∥DF,AC=DF
∴四边形ADFC是平行四边形
故答案为平行四边
(2)①∵△ACB是直角三角形,D是AB的中点
∴CD=AD=BD
∵AD=CF,AD∥FC
∴BD=CF
∵AD∥FC,BD=CF
∴四边形CDBF是平行四边形
又∵CD=BD
∴四边形CDBF是菱形.
②∵∠A=60°,AC=1,∠ACB=90°
∴BC=,DF=1
∵四边形CDBF的面积=DF×BC
∴四边形CDBF的面积=
此题主要考查三角形的平移,解题的关键是熟知菱形的判定与性质.
25、(1)(﹣2,0);(2)y=2x+1;(2)y=2x+2
【解析】
(1)由点N(0,1),得出ON=1,再由ON=2OM,求得OM=2,从而得出点M的坐标;
(2)设出直线MN的解析式为:y=kx+b,代入M、N两点求得答案即可;
(2)根据题意求得A的纵坐标,代入(2)求得的解析式建立方程,求得答案即可.
【详解】
(1)∵N(0,1),ON=2OM,∴OM=2,∴M(﹣2,0).
故答案为:(﹣2,0);
(2)设直线MN的函数解析式为y=kx+b,把点(﹣2,0)和(0,1)分别代入上式,得:,解得:k=2,b=1,∴直线MN的函数解析式为:y=2x+1.
(1)把x=﹣1代入y=2x+1,得:y=2×(﹣1)+1=2,即点A(﹣1,2),所以点C(0,2),∴由平移后两直线的k相同可得:平移后的直线为y=2x+2.
本题考查了待定系数法求函数解析式以及一次函数图象上点的坐标特征,熟练掌握待定系数法是本题的关键.
26、 (1)x1=,x2=﹣;(2)x1=2,x2=﹣2.
【解析】
(1)直接利用公式法求解即可;
(2)方程整理后,利用直接开平方法求解即可.
【详解】
解:(1)a=6,b=﹣1,c=﹣2,
∵△=1+48=49,
∴x=,
解得:x1=,x2=﹣;
(2)
方程整理得:x2=12,
开方得:x=±2,
解得:x1=2,x2=﹣2.
本题主要考查解一元二次方程,掌握解一元二次方程的方法,并能根据题目灵活选用合适的方法是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年江苏省南通市八校联考九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省泰州市名校数学九年级第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省南通市如东县数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。