2024年江苏省泗洪县九上数学开学学业质量监测模拟试题【含答案】
展开这是一份2024年江苏省泗洪县九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )
A.4种B.3种C.2种D.1种
2、(4分)估计的运算结果在哪两个整数之间( )
A.3和4B.4和5C.5和6D.6和7
3、(4分)计算的正确结果是( )
A.B.1C.D.﹣1
4、(4分)下列各式中,不是二次根式的是( )
A.B.C.D.
5、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD为矩形的是( )
A.∠ABC=90°B.AC=BD
C.AD=BC,AB∥CDD.∠BAD=∠ADC
6、(4分)在□ABCD 中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是( )
A.S1>S2B.S1=S2C.S1
A.2个B.3个C.4个D.5个
8、(4分)如图,,,,则的度数为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表,如下表.已知该校学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.
10、(4分)学校团委会为了举办“庆祝五•四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有____人.
11、(4分)如图所示,在正方形中,延长到点,若,则四边形周长为__________.
12、(4分)已知的对角线,相交于点,是等边三角形,且,则的长为__________.
13、(4分)某商品的标价比成本高,当该商品降价出售时,为了不亏本,降价幅度不得超过,若用表示,则___.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,E,F是正方形ABCD的对角线AC上的两点,且AE=CF.
(1)求证:四边形BEDF是菱形;
(2)若正方形ABCD的边长为4,AE=,求菱形BEDF的面积.
15、(8分)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.
(1)求证:矩形DEFG是正方形;
(2)求AG+AE的值;
(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.
16、(8分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.
(1)求证:矩形是正方形;
(2)判断与之间的数量关系,并给出证明.
17、(10分)(1)计算:
(2)计算:
(3)求不等式组的整数解.
18、(10分)一次函数的图象经过点.
(1)求出这个一次函数的解析式;
(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知二次函数的图象与轴没有交点,则的取值范围是_____.
20、(4分)如图,在中,,,是的角平分线,过点作于点,若,则___.
21、(4分)已知m+3n的值为2,则﹣m﹣3n的值是__.
22、(4分)有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.
23、(4分)若有意义,则的取值范围是_______
二、解答题(本大题共3个小题,共30分)
24、(8分)如图
如图1,四边形ABCD和四边形BCMD都是菱形,
(1)求证:∠M=60°
(2)如图2,点E在边AD上,点F在边CM上,连接EF交CD于点H,若AE=MF,求证:EH=HF;
(3)如图3,在第(2)小题的条件下,连接BH,若EF⊥CM,AB=3,求BH的长
25、(10分)如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C'.
(1)若点C'刚好落在对角线BD上时,BC'= ;
(2)当BC'∥DE时,求CE的长;(写出计算过程)
(3)若点C'刚好落在线段AD的垂直平分线上时,求CE的长.
26、(12分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;
(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
结合图象根据轴对称图形的概念求解即可.
【详解】
根据轴对称图形的概念可知,一共有3种涂法,如下图所示:
.
故选B.
本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、C
【解析】
先利用夹逼法求得的范围,然后可求得+的大致范围.
【详解】
∵9<10<16,
∴3<<4,
∴5<+<6,
故选C.
本题主要考查的是估算无理数的大小,利用夹逼法求得的范围是解题的关键.
3、A
【解析】
4、A
【解析】
根据二次根式的定义即可求出答案.
【详解】
解:由于3−π<0,
∴不是二次根式,
故选:A.
本题考查二次根式,解题的关键是正确理解二次根式的定义,本题属于基础题型.
5、C
【解析】
A.有一个角是直角的平行四边形是矩形,故答案错误;
B.对角线相等的平行四边形是矩形,故答案错误;
C.一组对边相等,另一组对边平行的平行四边形不能判定是矩形,故答案正确;
D.在平行四边形ABCD中,∠BAD+∠ADC=180°,根据∠BAD=∠ADC可以得到∠BAD=90°,故答案错误.
故选C.
6、B
【解析】
【分析】先证四边形ABPE和四边形PFCG都是平行四边形,再利用平行四边形对角线平分
四边形面积即可.
【详解】因为,在□ABCD 中,点P在对角线AC上,过P作EF∥AB,HG∥AD,
所以,四边形边形ABPE和四边形PFCG都是平行四边形,
所以,S△ABC=S△CDA,S△AEP=S△PHA,S△PFC=S△CGP,
所以,S△ABC- S△AEP - S△PFC =S△CDA- S△PHA- S△CGP,
所以,S△BFPH=S△DEPG,即:S1=S2
故选:B
【点睛】本题考核知识点:平行四边形性质.解题关键点:平行四边形对角线平分四边形面积.
7、C
【解析】
先分别以点O、点A为圆心画圆,圆与x轴的交点就是满足条件的点P,再作OA的垂直平分线,与x轴的交点也是满足条件的点P,由此即可求得答案.
【详解】
如图,当OA=OP时,可得P1、P2满足条件,
当OA=AP时,可得P3满足条件,
当AP=OP时,可得P4满足条件,
故选C.
本题考查了等腰三角形的判定和坐标与图形的性质,正确的分类并画出图形是解题的关键.
8、A
【解析】
由,易求,再根据,易求,于是根据进行计算即可.
【详解】
,,
,
又,,
,
,
.
故选:.
本题主要考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
试题分析:先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.
解:根据题意得:
1200×=1(人),
答:估计每周课外阅读时间在1~2(不含1)小时的学生有1人;
故答案为1.
考点:用样本估计总体.
10、250
【解析】
由扇形统计图可知,赞成举办郊游的学生占1-40%-35%=25%,根据赞成举办文艺演出的人数与对应的百分比可求出总人数,由此即可解决.
【详解】
400÷40%=1000(人),
1000×(1-40%-35%)=1000×25%=250(人),
故答案为250.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
11、
【解析】
由正方形的性质可知,在中,由勾股定理可得CE长,在中,根据勾股定理得DE长,再由求周长即可.
【详解】
解:如图,连接DE,
四边形ABCD为正方形
在中,根据勾股定理得,
在中,根据勾股定理得
所以四边形周长为,
故答案为:.
本题主要考查了勾股定理的应用,灵活的应用勾股定理求线段长是解题的关键.
12、.
【解析】
根据等边三角形的性质得出AD=OA=OD,利用平行四边形的性质和矩形的判定解答即可.
【详解】
解:∵△AOD是等边三角形,
∴AD=OA=OD=4,
∵四边形ABCD是平行四边形,
∴OA=AC,OD=BD,
∴AC=BD=8,
∴四边形ABCD是矩形,
在Rt△ABD中,,
故答案为:.
此题考查平行四边形的性质,关键是根据平行四边形的性质解答即可.
13、
【解析】
本题主要考查列代数式. 此题中最大的降价率即是保证售价和成本价相等,可以把成本价看作单位1,根据题意即可列式.
解:设成本价是1,则
(1+p%)(1-d%)=1.
1-d%=,
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析(2)8
【解析】
分析:
(1)连接BD交AC于点O,则由已知易得BD⊥AC,OD=OB=OA=OC,结合AE=CF可得OE=OF,由此可得四边形BEDF是平行四边形,再结合BD⊥EF即可得到四边形BEDF是菱形;
(2)由正方形ABCD的边长为4易得AC=BD=,结合AE=CF=,可得EF=,再由菱形的面积等于两对角线乘积的一半即可求得菱形BEDF的面积了.
详解:
(1)连接BD交AC于点O,
∵四边形ABCD为正方形,
∴BD⊥AC,OD=OB=OA=OC.
∵AE=CF,
∴OA-AE=OC-CF,即OE=OF,
∴四边形BEDF为平行四边形,
又∵BD⊥EF,
∴四边形BEDF为菱形.
(2)∵正方形ABCD的边长为4,
∴BD=AC=.
∵AE=CF=,
∴EF=AC-=,
∴S菱形BEDF=BD·EF=×.
点睛:这是一道考查“正方形的性质、菱形的判定和菱形面积计算的问题”,熟悉“正方形的性质、菱形的判定方法和菱形的面积等于其对角线乘积的一半”是解答本题的关键.
15、(1)见解析;(2)AE+AG==4;(3)EM=.
【解析】
(1)如图,作EM⊥AD于M,EN⊥AB于N.只要证明△EMD≌△ENF即可解决问题;
(2)只要证明△ADG≌△CDE,可得AG=EC即可解决问题;
(3)如图,作EH⊥DF于H.想办法求出EH,HM即可解决问题;
【详解】
(1)如图,作EM⊥AD于M,EN⊥AB于N.
∵四边形ABCD是正方形,
∴∠EAD=∠EAB,
∵EM⊥AD于M,EN⊥AB于N,
∴EM=EN,
∵∠EMA=∠ENA=∠DAB=90°,
∴四边形ANEM是矩形,
∴∠MEN=∠DEF=90°,
∴∠DEM=∠FEN,
∵∠EMD=∠ENF=90°,
∴△EMD≌△ENF,
∴ED=EF,
∵四边形DEFG是矩形,
∴四边形DEFG是正方形.
(2)∵四边形DEFG是正方形,四边形ABCD是正方形,
∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,
∴∠ADG=∠CDE,
∴△ADG≌△CDE,
∴AG=CE,
∴AE+AG=AE+EC=AC=AD=4.
(3)如图,作EH⊥DF于H.
∵四边形ABCD是正方形,
∴AB=AD=4,AB∥CD,
∵F是AB中点,
∴AF=FB
∴DF=,
∵△DEF是等腰直角三角形,EH⊥AD,
∴DH=HF,
∴EH=DF=,
∵AF∥CD,
∴AF:CD=FM:MD=1:2,
∴FM=,
∴HM=HF﹣FM=,
在Rt△EHM中,EM=.
本题考查正方形的性质、全等三角形的判定和性质、矩形的性质和判定、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
16、(1)详见解析;(2),理由详见解析.
【解析】
作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;
根据四边形的性质即全等三角形的性质即可证明,即可得在中,则
【详解】
证明:(1)过作于点,过作于点,如图所示:
正方形,,
,且,
四边形为正方形
四边形是矩形,,.,
又,
在和中,
,,
矩形为正方形,
(2)矩形为正方形,,
四边形是正方形,,,
,
在和中,,
,,
在中,,
本题考查正方形的判定与性质,解题关键在于证明.
17、(1);(2);(3)不等式组的整数解是0.
【解析】
(1)先把二次根式化为最简二次根式,然后合并即可;
(2)利用完全平方公式和平方差公式计算;
(3)分别解两个不等式得到和x<1,然后根据大小小大取中间确定不等式组的解集,从而得到不等式组的整数解
【详解】
解:(1)原式;
(2)原式;
(3)
解不等式①得,;
解不等式②得,,
∴不等式组的解集为,
∴不等式组的整数解是0.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍,也考查了解不等式组.
18、(1),(2).
【解析】
(1)把点(-1,2)代入即可求解;
(2)根据一次函数的平移性质即可求解.
【详解】
(1)把点(-1,2)代入
即2=-k+4
解得k=2,
∴一次函数为
(2)把向下平移一个单位得到的函数为
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由二次函数y=2x2-6x+m的图象与x轴没有交点,可知△<0,解不等式即可.
【详解】
∵二次函数y=2x2-6x+m的图象与x轴没有交点,
∴△<0,
∴(-6)2-4×2×m<0,
解得:;
故答案为:.
本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.
20、
【解析】
根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.
【详解】
∵∠ACB=90°,CA=CB,
∴∠B=45°,
∵AD平分∠CAB,∠ACB=90°,DE⊥AB,
∴DE=CD=1,∠BDE=45°,
∴BE=DE=1,
在Rt△BDE中,根据勾股定理得,BD=.
故答案为:.
本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.
21、.
【解析】
首先将原式变形,进而把已知代入,再利用二次根式的性质化简进而计算得出答案.
【详解】
解:∵m+3n=,
∴﹣m﹣3n
=
=
=,
故答案为:.
本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质和整体代入思想的运用.
22、21
【解析】
先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.
【详解】
∵斜坡的水平距离为120米,高50米,
∴斜坡长为米,
又∵树的间距为6.5,
∴可种130÷6.5+1=21棵.
此题主要考察勾股定理的的应用.
23、
【解析】
根据二次根式有意义的条件:被开方数为非负数求解即可.
【详解】
解:代数式有意义,
,
解得:.
故答案为:.
本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析 (2)证明见解析 (3)
【解析】
(1)利用菱形的四条边相等,可证CD=DM=CM=AD,就可得到△CDM是等边三角形,再利用等边三角形的三个角都是60°,就可求出∠M的度数;
(2)过点E作EG∥CM交CD的延长线于点G,可得到∠G=∠HCF,先证明△EDG是等边三角形,结合已知条件证明EG=CF,利用AAS证明△EGH≌△FCH,再根据全等三角形的对应边相等,可证得结论;
(3)设BD,EF交于点N,根据前面的证明可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,再利用垂直的定义及三角形内角和定理可求出∠HED,∠EHD的度数,从而利用等腰三角形的判定和性质,可证得ED=DH=CF,可推出CD=3DH,就可求出DH的长,然后利用解直角三角形分别求出BN,NH的长,再利用勾股定理就可求出BH的长.
【详解】
(1)证明:∵ 四边形ABCD和四边形BCMD都是菱形,
∴BC=CD=AD,BC=DM=CM
∴CD=DM=CM=AD,
∴△CDM是等边三角形,
∴∠M=60°。
(2)解: 如图2,过点E作EG∥CM交CD的延长线于点G,
∴∠G=∠HCF=60°,∠GED=∠M=60°,
∴∠G=∠GED=∠EDG=60°,
∴△EDG是等边三角形
∴EG=DE;
∵AD=CM,AE=MF,
∴DE=CF,
∴EG=CF;
在△EGH和△FCH中,
∴△EGH≌△FCH(AAS)
∴EH=FH.
(3)解: 如图3,设BD,EF交于点N,
由(1)(2)的证明过程可知BD=CD=AB=3,∠M=∠CDM=60°,DE=CF,
∵EF⊥CM,
∴∠EFM=90°,
∴∠HED=90°-60°=30°,
∠CDM=∠HED+∠EHD=60°
∴∠EHD=60°-30°=30°=∠HED=∠CHF
∴ED=DH=CF,
在R△CHF中,∠CHF=30°
∴CH=2CH=2DH,
∴CD=CH+DH=3DH=3
解之:DH=CF=1
∵菱形CBDM,EF⊥CM
∴BD∥CM
∴EF⊥BD;
∴∠DNH=∠BNH=90°,
在Rt△DHN中,∠DHN=30°,DH=1
∴DN=DHsin∠30°=,
NH=DHcs30°=;
∴BN=BD-DN=3-=,
在Rt△BHN中,
BH=.
本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行线的性质、勾股定理、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质是解题的关键.
25、(1)4(2)4(3)CE的长为或
【解析】
【分析】(1)根据∠C=90°,BC=8,可得Rt△BCD中,BD=10,据此可得BC′=10-6=4;
(2)由折叠得,∠CED=∠C′ED,根据BC′∥DE,可得∠EC′B=∠C′ED,∠CED=∠C′BE,进而得到∠EC′B=∠C′EB,据此可得BE=C′E=EC=4;
(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:①当点C′在矩形内部时;②当点C′在矩形外部时,分别根据勾股定理,列出关于x的方程进行求解即可.
【详解】(1)如图1,由折叠可得DC'=DC=6,
∵∠C=90°,BC=8,
∴Rt△BCD中,BD=10,
∴BC′=10-6=4,
故答案为4;
(2)如图2,由折叠得,∠CED=∠C′ED,
∵BC′∥DE,
∴∠EC′B=∠C′ED,∠CED=∠C′BE,
∴∠EC′B=∠C′EB,
∴BE=C′E=EC=4;
(3)作AD的垂直平分线,交AD于点M,交BC于点N,分两种情况讨论:
①两点C’在矩形内部时,如图3,
∵点C’在AD的垂直平分线上,
∴DM=4.
∵DC’=DC=6,
∴由勾股定理,得,
,
设则,
,
,
解得,即;
②当点在矩形外部时,如图4,
∵点在AD的垂直平分线上,
∴DM=4,
,
∴由勾股定理,得,
,
设则,
,
,
解得,即 ,
综上所述,CE的长为或.
【点睛】本题属于四边形综合题,主要考查了折叠的性质,矩形的性质,垂直平分线的性质以及勾股定理的综合应用.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
26、(1)甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)y=24-2x;
(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
【解析】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;
(2)根据总社区计划对面积为1200m2,即可列出函数关系式;
(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.
【详解】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,
经检验,x=50是方程的解,
故甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)依题意得100x+50y=1200,
化简得y=24-2x,
故求y与x的函数解析式为y=24-2x;
(3)∵工期不得超过14天,
∴x+y≤14,0≤x≤14,0≤y≤14
即x+24-2x≤14,解得x≥10,
∴x的取值为10≤x≤12;
设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,
当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a
当x=12时,w=(1600+a)×12=19200+12a,
∵100≤a≤300,经过计算得
当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.
题号
一
二
三
四
五
总分
得分
批阅人
每周课外阅读时间(小时)
0~1
1~2(不含1)
2~3(不含2)
超过3
人 数
7
10
14
19
相关试卷
这是一份2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。