2024年江苏省启东市数学九上开学调研模拟试题【含答案】
展开
这是一份2024年江苏省启东市数学九上开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是( )
A.方差B.平均数C.中位数D.众数
2、(4分)下列命题中,是真命题的是( )
A.平行四边形的对角线一定相等
B.等腰三角形任意一条边上的高线、中线和角平分线都三线合一
C.三角形的中位线平行于第三边并且等于它的一半
D.三角形的两边之和小于第三边
3、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是
A.B.C.D.
4、(4分)下列式子中,表示y是x的正比例函数的是( )
A.y=2x2B.y=C.y=D.y2=3x
5、(4分)一元二次方程x2-9=0的解为( )
A.x1=x2=3B.x1=x2=-3C.x1=3,x2=-3D.x1=,x2=-
6、(4分)若式子在实数范围内有意义,则的取值范围是( )
A.B.C.D.
7、(4分)若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( )
A.12B.10C.8D.11
8、(4分)在平面直角坐标系中,点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办了“玩转数学”比赛.评委从研究报告、小组展示、答辩三个方面为每个参赛小组打分,按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,各项成绩均按百分制记录.甲小组的研究报告得85分,小组展示得90分,答辩得80分,则甲小组的参赛成绩为_____.
10、(4分)已知一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,请你写出一个符合上述条件的函数式_____.(答案不唯一)
11、(4分)▱ABCD的周长是30,AC、BD相交于点O,△OAB的周长比△OBC的周长大3,则AB=_____.
12、(4分)如图,已知在矩形中,,,沿着过矩形顶点的一条直线将折叠,使点的对应点落在矩形的边上,则折痕的长为__.
13、(4分)如图,已知反比例函数的图象经过点,若在该图象上有一点,使得,则点的坐标是_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)解方程:=;
(2)因式分解:2x2-1.
15、(8分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.
(1)求EG:BG的值;
(2)求证:AG=OG;
(3)设AG=a,GH=b,HO=c,求a:b:c的值.
16、(8分)(本小题满分12分)
直线y=x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作长方形ABCD,AB:BC=3:1.
(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;
(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.
17、(10分)如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠B=60.
(1)求证:ABAC;
(2)若DC=2,求梯形ABCD的面积.
18、(10分)如图所示,四边形 ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.
(1)求证:BD⊥CB;
(2)求四边形 ABCD 的面积;
(3)如图 2,以 A 为坐标原点,以 AB、AD所在直线为 x轴、y轴建立直角坐标系,
点P在y轴上,若 S△PBD=S四边形ABCD,求 P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的对角线相交于点O,若AB=5,OA=4,则菱形ABCD的面积_____.
20、(4分)如图,是互相垂直的小路,它们用连接,则_______.
21、(4分)要使二次根式有意义,则自变量的取值范围是___.
22、(4分)如图,矩形ABCD中,AB=6,BC=8,E是BC上一点(不与B、C重合),点P在边CD上运动,M、N分别是AE、PE的中点,线段MN长度的最大值是_____.
23、(4分)已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且,连接BE,求证:.
25、(10分)甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示
(1)求甲车从A地到达B地的行驶时间;
(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;
(3)求乙车到达A地时甲车距A地的路程.
26、(12分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.
(1)求证:;
(2)求证:;
(3)当时,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.
故选.
2、C
【解析】
根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.
【详解】
解:A、平行四边形的对角线互相平分,说法错误,故A选项错误;
B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项错误;
C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项正确;
D、三角形的两边之和大于第三边,说法错误,故D选项错误.
故选:C.
本题考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解答关键是熟记相关的性质与判定.
3、B
【解析】
根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.
【详解】
当时,四边形EFGH是矩形,
,,,
,
即,
四边形EFGH是矩形;
故选:B.
此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.
4、C
【解析】
根据正比例函数y=kx的定义条件:k为常数且k≠0,自变量次数为1,判断各选项,即可得出答案.
【详解】
A、y=2x2表示y是x的二次函数,故本选项错误;
B、y=表示y是x的反比例函数,故本选项错误;
C、y=表示y是x的正比例函数,故本选项正确;
D、y2=3x不符合正比例函数的含义,故本选项错误;
故选:C.
本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
5、C
【解析】
先变形得到x2=9,然后利用直接开平方法解方程.
【详解】
解:x2=9,
∴x=±1,
∴x1=1,x2=-1.
故选:C.
本题考查了直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.
6、D
【解析】
由二次根式的性质可以得到x-1≥0,由此即可求解.
【详解】
解:依题意得:x-1≥0,
∴x≥1.
故选:D.
此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.
7、A
【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.
【详解】
设这个多边形是n边形,
根据题意得,(n﹣2)•180°=5×360°,
解得n=1.
故选:A.
本题考查了多边形的内角和公式与外角和定理,熟练掌握多边形的内角和公式与外角和定理是解题的关键.
8、B
【解析】
应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.
【详解】
∵点P(−1,2)的横坐标−10,
∴点P在第二象限。
故选:B.
此题考查点的坐标,难度不大
二、填空题(本大题共5个小题,每小题4分,共20分)
9、85分
【解析】
根据加权平均数的定义计算可得.
【详解】
根据题意知,甲小组的参赛成绩为85×40%+90×30%+80×30%=85(分),
故答案为:85分.
本题考查的是加权平均数的求法,根据某方面的需要选拔时往往利用加权平均数更合适.
10、y=x+1
【解析】
∵一次函数y=kx+b(k≠0)的图象经过点(0,1),且y随x的增大而增大,∴k>0,图象经过点(0,1),∴b=1,只要符合上述条件即可.
【详解】
解:只要k>0,b>0且过点(0,1)即可,由题意可得,k>0,b=1,符合上述条件的函数式,例如y=x+1(答案不唯一)
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
11、1.
【解析】
如图:由四边形ABCD是平行四边形,可得AB=CD,BC=AD,OA=OC,OB=OD;又由△OAB的周长比△OBC的周长大3,可得AB﹣BC=3,又因为▱ABCD的周长是30,所以AB+BC=10;解方程组即可求得.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,BC=AD,OA=OC,OB=OD;
又∵△OAB的周长比△OBC的周长大3,
∴AB+OA+OB﹣(BC+OB+OC)=3
∴AB﹣BC=3,
又∵▱ABCD的周长是30,
∴AB+BC=15,
∴AB=1.
故答案为1.
12、或
【解析】
沿着过矩形顶点的一条直线将∠B折叠,可分为两种情况:(1)过点A的直线折叠,(2)过点C的直线折叠,分别画出图形,根据图形分别求出折痕的长.
【详解】
(1)如图1,沿将折叠,使点的对应点落在矩形的边上的点,
由折叠得:是正方形,此时:,
(2)如图2,沿,将折叠,使点的对应点落在矩形的边上的点,
由折叠得:,
在中,,
,
设,则,
在中,由勾股定理得:,解得:,
在中,由勾股定理得:,
折痕长为:或.
考查矩形的性质、轴对称的性质、直角三角形及勾股定理等知识,分类讨论在本题中得以应用,画出相应的图形,依据图形矩形解答.
13、
【解析】
作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=4,A′F=AE=3,即A′(4,-3),求出线段AA′的中垂线的解析式,利用方程组确定交点坐标即可.
【详解】
解:如图,作AE⊥y轴于E,将线段OA绕点O顺时针旋转90°得到OA′,作A′F⊥x轴于F,则△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,-4).
∵反比例函数的图象经过点A(4,5),
所以由勾股定理可知:OA=,
∴k=4×5=20,
∴y=,
∴AA′的中点K(),
∴直线OK的解析式为y=x,
由,
解得或,
∵点P在第一象限,
∴P(),
故答案为().
本题考查反比例函数图象上点的坐标特征,一次函数的应用等知识,解题的关键是学会构造全等三角形解决问题,学会构建一次函数,利用方程组确定交点坐标,属于中考填空题中的压轴题.
三、解答题(本大题共5个小题,共48分)
14、(1)x=-10;(2)2(x+2)(x-2)
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)原式先提取公因式,再利用平方差公式分解即可.
【详解】
解:(1)去分母得:2x-4=3x+6,解得:x=-10,
经检验x=-10是分式方程的解,
∴原方程的解为:x=-10;
(2)原式=.
此题考查了解分式方程以及提公因式法与公式法的综合运用,熟练掌握分式方程的解法和分解因式的方法是解本题的关键.
15、(1)1:3;(1)见解析;(3)5:3:1.
【解析】
(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;
(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;
(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AO=AC,AD=BC,AD∥BC,
∴△AEG∽△CBG,
∴.
∵AE=EF=FD,
∴BC=AD=3AE,
∴GC=3AG,GB=3EG,
∴EG:BG=1:3;
(1)∵GC=3AG(已证),
∴AC=4AG,
∴AO=AC=1AG,
∴GO=AO﹣AG=AG;
(3)∵AE=EF=FD,
∴BC=AD=3AE,AF=1AE.
∵AD∥BC,
∴△AFH∽△CBH,
∴,
∴=,即AH=AC.
∵AC=4AG,
∴a=AG=AC,
b=AH﹣AG=AC﹣AC=AC,
c=AO﹣AH=AC﹣AC=AC,
∴a:b:c=::=5:3:1.
16、(1);(2)四边形ADBE仍然是平行四边形;.
【解析】
试题分析:对于直线y=x+6,分别令x与y为0求出y与x的值,确定出E与F坐标,
(1)当A与F重合时,根据F坐标确定出A坐标,进而确定出AB的长,由AB与BC的比值求出BC的长,确定出AD=BE,而AD与BE平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据AB与BC的长确定出D坐标,设直线DE解析式为y=kx+b,将D与E坐标代入求出k与b的值,即可确定出直线DE解析式;
(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形,理由为:根据直线y=x+6解析式设出A坐标,进而表示出AB的长,根据A与B横坐标相同确定出B坐标,进而表示出EB的长,发现EB=AD,而EB与AD平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据BC的长求出OC的长,表示出D坐标,设直线DE解析式为y=k1x+b1,将D与E坐标代入求出k1与b1的值,即可确定出直线DE解析式.
试题解析:对于直线y=x+6,
令x=0,得到y=6;令y=0,得到x=﹣8,即E(﹣8,0),F(0,6),
(1)当点A与点F重合时,A(0,6),即AB=6,
∵AB:BC=2:1,
∴BC=8,
∴AD=BE=8,
又∵AD∥BE,
∴四边形ADBE是平行四边形;
∴D(8,6),
设直线DE解析式为y=kx+b(k、b为常数且k≠0),
将D(8,6),E(﹣8,0)代入得:,
解得:b=2,k=.
则直线DE解析式为y=x+2;
(2)四边形ADBE仍然是平行四边形,理由为:
设点A(m,m+6)即AB=m+6,OB=﹣m,即B(m,0),
∴BE=m+8,
又∵AB:BC=2:1,
∴BC=m+8,
∴AD=m+8,
∴BE=AD,
又∵BE∥AD,
∴四边形ADBE仍然是平行四边形;
又∵BC=m+8,
∴OC=2m+8,
∴D(2m+8,m+6),
设直线DE解析式为y=k1x+b1(k1、b1为常数且k1≠0),
将D与E坐标代入得:,
解得:k1=,b1=2,
则直线DE解析式为y=x+2.
考点:一次函数综合题.
17、(1)见解析;(2)
【解析】
(1)利用等腰梯形的性质可求得,再利用平行的性质及等边对等角可求出,然后根据三角形内角和即可求出,从而得到结论;
(2)过点作于点,利用含30°角的直角三角形的性质可求出BE、BC,根据勾股定理求出AE,然后利用面积公式进行计算即可.
【详解】
证明:(1)∵,,,
∴,,
又∵,
∴,
∴,
∴,
∴;
(2)过点作于,
∵,
∴,
又∵,
∴,
∴在中,,
∵,,
∴,
∴.
本题考查了等腰梯形的性质,含30°角的直角三角形的性质,等边对等角及勾股定理,需要熟记基础的性质定理,熟练应用.
18、(1)证明见解析;(1)36m1;(3)P 的坐标为(0,-1)或(0,10).
【解析】
(1)先根据勾股定理求出 BD 的长度,然后根据勾股定理的逆定理,即可证明
BD⊥BC;
(1)根据四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积,代入数据计算即可求解;
(3)先根据 S△PBD=S四边形 ABCD,求出 PD,再根据 D 点的坐标即可求解.
【详解】
(1)证明:连接 BD.
∵AD=4m,AB=3m,∠BAD=90°,
∴BD=5m.
又∵BC=11m,CD=13m,
∴BD1+BC1=CD1.
∴BD⊥CB;
(1)四边形 ABCD 的面积=△ABD 的面积+△BCD 的面积
= ×3×4+ ×11×5
=6+30
=36(m1).
故这块土地的面积是 36m1;
(3)∵S△PBD=S 四边形ABCD
∴•PD•AB= ×36,
∴•PD×3=9,
∴PD=6,
∵D(0,4),点 P 在 y 轴上,
∴P 的坐标为(0,-1)或(0,10).
本题主要考查了勾股定理、勾股定理的逆定理、三角形的面积等知识点,解此题的关键是能求出∠DBC=90°.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
根据菱形的性质:菱形的两条对角线互相垂直可计算出该菱形的面积.
【详解】
解:因为四边形ABCD是菱形,
所以AC⊥BD.
在Rt△AOB中,利用勾股定理求得BO=1.
∴BD=6,AC=2.
∴菱形ABCD面积为×AC×BD=3.
故答案为3.
本题考查了菱形的性质的灵活运用,熟练运行菱形的性质来求其面积是解决此题的关键.
20、450°
【解析】
如图,作出六边形,根据“n边形的内角和是(n-2)•180°”求出内角和,再求∠的度数.
【详解】
解:过点A作AB的垂线,过点E作DE的垂线,两线相交于点Q,
则∠BAQ=∠DEQ=90°,
∵DE⊥AB,QA⊥AB,
∴DE∥QA,
∴∠AQE=180°-∠DEQ=90°,
∵六边形ABCDEQ的内角和为:(6-2)•180°=720°,
∴=720°-90°×3=450°.
故答案为:450°.
本题主要考查了多边形的内角和定理.解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.
21、
【解析】
根据被开方数必须是非负数,可得答案.
【详解】
解:由题意,得
,
解得,
故答案为:.
本题考查了二次根式的意义条件,概念:式子叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.
22、5
【解析】
由条件可先求得MN=AP,则可确定出当P点运动到点C时,PA有最大值,即可求得MN的最大值
【详解】
∵M为AE中点,N为EP中点
∴MN为△AEP的中位线,
∴MN= AP
若要MN最大,则AP最大.
P在CD上运动,当P运动至点C时PA最大,
此时PA=CA是矩形ABCD的对角线
AC==10,
MN的最大值= AC=5
故答案为5
此题考查了三角形中位线定理和矩形的性质,解题关键在于先求出MN=AP
23、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半可求得答案.
【详解】
解:
∵直角三角形斜边长为6cm,
∴斜边上的中线长= ,
故答案为:1.
本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、证明见解析
【解析】
由平行四边形性质得,,,又证≌,可得,.
【详解】
证明:
四边形ABCD是平行四边形,
,,
,
,
,
,
在和中,
,
≌,
.
本题考核知识点:平行四边形性质,全等三角形. 解题关键点:由全等三角形性质得到线段相等.
25、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.
【解析】
试题分析:(1)根据题意列算式即可得到结论;
(2)根据题意列方程组即可得到结论;
(3)根据题意列算式即可得到结论.
试题解析:(1)300÷(180÷1.5)=2.5(小时).
答:甲车从A地到达B地的行驶时间是2.5小时;
(2)设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);
(3)300÷[(300﹣180)÷1.5]=3.75小时,当x=3.75时,y=175千米.
答:乙车到达A地时甲车距A地的路程是175千米.
考点:一次函数的应用;分段函数.
26、(1)证明见解析;(2)证明见解析;(3)PH=.
【解析】
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
【详解】
(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
设AE=x,则EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折叠的性质可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年江苏省金坛市尧塘,河头,水北中学九上数学开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省江阴市澄东片数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省邗江中学九上数学开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。