![2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16210281/0-1727781382656/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16210281/0-1727781382742/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16210281/0-1727781382767/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份2024年江苏省苏州昆山市数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为 ( )
A.6B.5C.4D.3
2、(4分)如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G,EG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,A、C、F 三点在一条直线上( )
A.B.C.D.
3、(4分)在反比例函数y=的图象的每一条曲线上,y都随x的增大而减小,则m的值可以是( )
A.0B.1C.2D.3
4、(4分)在学校举办的独唱比赛中,10位评委给小丽的平分情况如表所示:
则下列说法正确的是( )
A.中位数是7.5B.中位数是8C.众数是8D.平均数是8
5、(4分)在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )
A.测量对角线是否互相平分
B.测量两组对边是否分别相等
C.测量一组对角是否为直角
D.测量两组对边是否相等,再测量对角线是否相等
6、(4分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D. 如果∠A=30°,EC=2,则下列结论不正确的是( )
A.ED=2B.AE=4
C.BC=D.AB=8
7、(4分)已知:如图,菱形中,对角线、相交于点,且,,点是线段上任意一点,且,垂足为,,垂足为,则的值是
A.12B.24C.36D.48
8、(4分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是( )
A.6B.3C.2D.4.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知是一个关于的完全平方式,则常数的值为______.
10、(4分)请你写出一个有一根为0的一元二次方程:______.
11、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
12、(4分)小明统计了他家今年1月份打电话的次数及通话时间,并列出了频数分布表(如表)
如果小明家全年打通电话约1000次,则小明家全年通话时间不超过5min约为_____次.
13、(4分)如图,在平面直角坐标系中,已知OA=4,则点A的坐标为____________,直线OA的解析式为______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简:,再从中选取一个你认为合适的整数代入求值.
15、(8分)化简:(.
16、(8分)甲、乙两台机床同时生产一种零件.在连续周中,两台机床每周出次品的数量如下表.
(1)分别计算两组数据的平均数与方差;
(2)两台机床出次品的平均数怎样?哪台机床出次品的波动性小?
17、(10分)计算与化简:
(1)-;
(2)(3+)2
(3)+;
(4)÷(x-)
18、(10分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在反比例函数图象的毎一支曲线上,y都随x的增大而减小,则k的取值范围是__________.
20、(4分)如图,在矩形中,,,点为的中点,将沿折叠,使点落在矩形内点处,连接,则的长为________.
21、(4分)线段、正三角形,平行四边形、菱形中,只是轴对称图形的是_________.
22、(4分)若是完全平方式,则的值是__________.
23、(4分)的非负整数解为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
25、(10分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
26、(12分)已知A.B两地果园分别有苹果30吨和40吨,C.D两地的农贸市场分别需求苹果20吨和50吨。已知从A.B两地到C.D两地的运价如表:
(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;
(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.
【详解】
解:连接EG、FG,
EG、FG分别为直角△BCE、直角△BCF的斜边中线,
∵直角三角形斜边中线长等于斜边长的一半
∴EG=FG=BC=×10=5,
∵D为EF中点
∴GD⊥EF,
即∠EDG=90°,
又∵D是EF的中点,
∴,
在中,
,
故选C.
本题考查了直角三角形中斜边 上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.
2、C
【解析】
过F作BC的垂线,交BC延长线于N点,连接AF.只要证明Rt△FNE∽Rt△ECD,利用相似比2:1解决问题.再证明△CNF是等腰直角三角形即可解决问题.
【详解】
过F作BC的垂线,交BC延长线于N点,连接AF.
∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,
∴∠DEC=∠EFN,
∴Rt△FNE∽Rt△ECD,
∵DE的中点G,EG绕E顺时针旋转90°得EF,
∴两三角形相似比为1:2,
∴可以得到CE=2NF,NE=CD=5.
∵AC平分正方形直角,
∴∠NFC=45°,
∴△CNF是等腰直角三角形,
∴CN=NF,
∴CE=NE=5=,
故选C.
本题考查正方形的性质和旋转的性质,解题的关键是掌握正方形的性质和旋转的性质.
3、A
【解析】
根据反比例函数的性质,可得出,从而得出的取值范围.
【详解】
解:反比例函数的图象的每一条曲线上,都随的增大而减小,
,
解得,则m可以是0.
故选A.
本题考查了反比例函数的性质,当时,都随的增大而减小;当时,都随的增大而增大.
4、A
【解析】
分别利用众数、中位数及加权平均数的定义及公式求得答案后即可确定符合题意的选项.
【详解】
∵共10名评委,
∴中位数应该是第5和第6人的平均数,为7分和8分,
∴中位数为:7.5分,
故A正确,B错误;
∵成绩为6分和8分的并列最多,
∴众数为6分和8分,
故C错误;
∵平均成绩为:=8.5分,
故D错误,
故选:A.
本题考查了众数、中位数及加权平均数的知识,解题的关键是能够根据定义及公式正确的求解,难度不大.
5、D
【解析】
根据矩形和平行四边形的判定推出即可得答案.
【详解】
A、根据对角线互相平分只能得出四边形是平行四边形,故本选项错误;
B、根据对边分别相等,只能得出四边形是平行四边形,故本选项错误;
C、根据一组对角是否为直角不能得出四边形的形状,故本选项错误;
D、根据对边相等可得出四边形是平行四边形,根据对角线相等的平行四边形是矩形可得出此时四边形是矩形,故本选项正确;
故选D.
本题考查的是矩形的判定定理,矩形的判定定理有①有三个角是直角的四边形是矩形;②对角线互相平分且相等的四边形是矩形;③有一个角是直角的平行四边形是矩形.牢记这些定理是解题关键.
6、D
【解析】
根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.
【详解】
∵∠ACB=90°,∠A=30°
∴
∵BE平分∠ABC,ED⊥AB ,EC=2
∴,,故选项A正确
∴,故选项B正确
∴ ,故选项C正确
∴,故选项D错误
故答案为:D.
本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.
7、A
【解析】
由菱形的性质可得AC⊥BD,AO=CO=3,BO=DO=4,通过证明△AFP∽△AOD,△PED∽△AOD,可得,,即可求解.
【详解】
解:四边形是菱形
,,,
,
,
,
,
故选:.
本题考查了菱形的性质,相似三角形的判定和性质,利用相似比求解是本题的关键.
8、C
【解析】
【分析】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形ABCD= AC•BD=AB•E′M求得E′M的长即可得答案.
【详解】如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,
则点P、M即为使PE+PM取得最小值的点,
则有PE+PM=PE′+PM=E′M,
∵四边形ABCD是菱形,
∴点E′在CD上,
∵AC=6,BD=6,
∴AB=,
由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,
解得:E′M=2,
即PE+PM的最小值是2,
故选C.
【点睛】本题考查了轴对称——最短路径问题,涉及到菱形的性质、勾股定理等,确定出点P的位置是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据完全平方公式的特点即可求解.
【详解】
∵是一个关于的完全平方式
∴=2×2x×
解得n=1
此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.
10、
【解析】
根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.
【详解】
可以是,=0等.
故答案为:
本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.
11、1.
【解析】
连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
【详解】
如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=1.
∵ABCD为矩形,
∴AC=BD=1.
故答案为:1.
本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
12、1.
【解析】
根据表格中的数据可以计算出小明家全年通话时间不超过5min的次数,本题得以解决.
【详解】
由题意可得,
小明家全年通话时间不超过5min约为:1000×=1(次),
故答案为:1.
本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
13、 (2,2), y=
【解析】
分析:根据锐角三角函数即可求出点A的坐标,把点A坐标代入直线OA的解析式可直接求出其解析式.
详解:如图:过A点作x轴,y轴的垂线,交于点B,C.
∵OA=4,且∠AOC=30°,
∴AC=2,OC=2.
∴点A(2).
设直线OA的解析式为y=kx,
∵点A(2,2),
∴k=,
∴直线OA的解析式:y=x.
点睛:本题主要考查了锐角三角函数的定义,难点在于用待定系数法求正比例函数解析式.
三、解答题(本大题共5个小题,共48分)
14、;当时,原式或当时,原式(任选其一即可).
【解析】
先根据分式的各个运算法则化简,然后从x的取值范围中选取一个使原分式有意义的值代入即可.
【详解】
解:原式
.
∵的整数有-4,-3,-2,-1,又根据分式的有意义的条件,,3和-1.
∴取-4或-2.
当时,原式.
当时,原式.
此题考查的是分式的化简求值题,掌握分式的各个运算法则和分式有意义的条件是解决此题的关键.
15、8-4
【解析】
【分析】运用平方差公式和完全平方公式可求出结果.
【详解】解:原式=2﹣1+3﹣4+4
=8﹣4.
【点睛】本题考核知识点:整式运算.解题关键点:熟记平方差公式和完全平方公式.
16、(1)甲的平均数为:;乙的平均数为:;甲的方差为:;乙的方差为:;
(2)两台机床出次品的平均数相同;甲机床出次品的波动性小.
【解析】
(1)先分别计算出两组数据的平均数,然后利用方差公式分别计算即可;
(2)根据(1)的数据进行比较得出答案即可.
【详解】
(1)甲的平均数为:;
乙的平均数为:;
甲的方差为:S2甲==;
乙的方差为:S2乙==;
(2)由(1)可得两台机床出次品的平均数相同,
∵S2甲< S2乙,
∴甲机床出次品的波动性小.
本题主要考查了平均数与方差的运用,熟练掌握相关概念是解题关键.
17、(1);(2)19+6;(3);(4).
【解析】
(1)先把化简为最简二次根式,再按照实数的运算法则计算即可;(2)根据实数的运算法则,利用完全平方公式计算即可;(3)先通分,再按照同分母分式的加法法则计算即可;(4)先把括号内的式子通分计算,再按照分式的除法法则计算即可.
【详解】
(1)-
=2-
=.
(2)(3+)2
=32+6+()2
=9+6+10
=19+6.
(3)+
=+
=
=.
(4)÷(x-)
=÷
=
=.
本题考查实数的运算和分式的运算,熟练掌握运算法则是解题关键.
18、见解析.
【解析】
由平行四边形ABCD的性质得到AD∥BC,AD=BC,再由题意得AF∥EC,AF=EC,从而得证四边形AECF是平行四边形.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∵点E,F分别是BC,AD的中点,
∴,
∴AF∥EC,AF=EC,
∴四边形AECF是平行四边形.
本题主要考察平行四边形的性质和判定,熟练掌握平行四边形的性质和判定是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据反比例函数中,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k-3>0,解可得k的取值范围.
【详解】
根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k−3>0,
解得k>3.
故答案为:k>3
此题考查反比例函数的性质,解题关键在于当反比例函数的系数大于0时得到k-3>0
20、
【解析】
连接BF,根据三角形的面积公式求出BH,得到BF,根据直角三角形的判定得到∠BFC=90°,根据勾股定理求出答案.
【详解】
连接BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴
∴
则
∵FE=BE=EC,
∴
∴
故答案为
考查翻折变换的性质和矩形的性质,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置不变,对应边和对应角相等是解题的关键.
21、正三角形
【解析】
沿着一条直线对折,图形两侧完全重合的是轴对称图形,绕着某一点旋转180°后能与原图形重合的是中心对称图形,根据定义逐个判断即可.
【详解】
线段既是轴对称图形,又是中心对称图形;
正三角形是轴对称图形,不是中心对称图形;
平行四边形不是轴对称图形,是中心对称图形;
菱形既是轴对称图形,又是中心对称图形;
只是轴对称图形的是正三角形,
故答案为:正三角形.
本题考查轴对称图形与中心对称图形的判断,熟练掌握定义是解题的关键.
22、
【解析】
根据完全平方公式即可求解.
【详解】
∵是完全平方式,
故k=
此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.
23、0,1,2
【解析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得:,
合并同类项,得,
不等式两边同时除以-7,得,
所以符合条件的非负整数解是0,1,2.
本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)能,t=10;(3)t=或12.
【解析】
(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.
【详解】
解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=AC=×60=30cm,
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,
∴DF=CD=2t,∴DF=AE;
(2)能,
∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,
∴当t=10时,AEFD是菱形;
(3)若△DEF为直角三角形,有两种情况:
①如图1,∠EDF=90°,DE∥BC,
则AD=2AE,即60﹣4t=2×2t,解得:t=,
②如图2,∠DEF=90°,DE⊥AC,
则AE=2AD,即,解得:t=12,
综上所述,当t=或12时,△DEF为直角三角形.
25、(1)△CDF是等腰三角形;(2)∠APD=45°.
【解析】
(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
【详解】
(1)△CDF是等腰直角三角形,理由如下:
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,,
∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,
∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,
如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,
,∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形,∴∠FCD=45°,
∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
∴AE∥CF,∴∠APD=∠FCD=45°.
26、(1)20,10,30,760;(2)从A果园运到C地的苹果数为5吨
【解析】
(1)A地果园有苹果30吨,运到C地的苹果为10吨,则从A果园运到D地的苹果为30-10吨,从B果园运到C地的苹果为20-10吨,从B果园运到D地的苹果为50-20吨,然后计算运输费用;
(2)表示出从A到C、D两地,从B到C、D两地的吨数,乘以运价就是总费用;根据总运输费为750元列出方程,求值即可.
【详解】
(1)从A果园运到D地的苹果为30−10=20(吨),
从B果园运到C地的苹果为20−10=10(吨),
从B果园运到D地的苹果为50−20=30(吨),
总费用为:10×15+20×12+10×10+30×9=760(元),
故答案为:20,10,30,760;
(2)设从A果园运到C地的苹果数为x吨,则
总费用为:15x+(360−12x)+10(20−x)+9×[40−(20−x)]+740
由题意得2x+740=750,
解得x=5.
答:从A果园运到C地的苹果数为5吨。
此题考查一元一次方程的应用,解题关键在于列出方程
题号
一
二
三
四
五
总分
得分
批阅人
成绩(分)
6
7
8
9
10
人数
3
2
3
1
1
通话时间x/min
0<x≤5
5<x≤10
10<x≤15
15<x≤20
频数(通话次数)
20
16
9
5
甲
乙
相关试卷
这是一份2024年江苏省苏州工业园区星港学校数学九年级第一学期开学学业质量监测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州昆山市石牌中学九上数学开学学业质量监测试题【含答案】,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)