2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】
展开
这是一份2024年江苏省苏州市工业园区星海实验中学数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F.则EF的最小值为( )
A.4B.4.8C.5.2D.6
2、(4分)若,则下列不等式正确的是
A.B.C.D.
3、(4分)某体育馆准备重新铺设地面,已有一部分正三角形的地砖,现要购买另一种不同形状的正多边形地砖与正三角形在同一顶点处作平面镶嵌(正多边形的边长相等),则该体育馆不应该购买的地砖形状是( )
A.正方形B.正六边形C.正八边形D.正十二边形
4、(4分)如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,则点A′的坐标为( )
A.B.C.D.
5、(4分)下列计算:,其中结果正确的个数为( )
A.1B.2C.3D.4
6、(4分)如图,在中,,,则的度数是( )
A.B.C.D.
7、(4分)多项式4x2﹣4与多项式x2﹣2x+1的公因式是( )
A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2
8、(4分)若关于x的方程x2﹣2x+m=0的一个根为﹣1,则另一个根为( )
A.﹣3B.﹣1C.1D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)四边形的外角和等于 .
10、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
11、(4分)如图,在矩形 中,,,那么 的度数为_____________.
12、(4分)正方形,,,...按如图的方式放置,点,,...和点,,...分别在直线和轴上,则点的坐标为_______.
13、(4分)如图,在正方形网格中有3个小方格涂成了灰色.现从剩余的13个白色小方格中选一个也涂成灰色,使整个涂成灰色的图形成轴对称图形,则这样的白色小方格有______个.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:
(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1
(2)(2a2+ab﹣2b2)(﹣ab)
15、(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级名学生进行测试,并把测试成绩(单位:) 绘制成不完整的频数分布表和频数分布直方图.
请根据图表中所提供的信息,完成下列问题
(1)表中= ,= ;
(2)请把频数分布直方图补充完整;
(3)跳远成绩大于等于为优秀,若该校九年级共有名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?
16、(8分)完成下列运算
(1)计算:
(2)计算:
(3)计算:
17、(10分)(1)如图1,将一矩形纸片ABCD沿着EF折叠,CE交AF于点G,过点G作GH∥EF,交线段BE于点H.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,并说明理由.
(2)如图2,如果将(1)中的已知条件改为折叠三角形纸片ABC,其它条件不变.
①判断EG与EH是否相等,并说明理由.
②判断GH是否平分∠AGE,如果平分,请说明理由;如果不平分,请用等式表示∠EGH,∠AGH与∠C的数量关系,并说明理由.
18、(10分)在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一组数据3,5,a,4,3的平均数是4,这组数据的方差为______.
20、(4分)已知一次函数y=kx+b(k≠0)的图象过点(2,0),且与两坐标轴围成的三角形的面积为1,则这个一次函数的解析式是_____.
21、(4分)化简的结果是_______.
22、(4分)如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.
23、(4分)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).
(1)图1中,点是的所在边上的中点,作出的边上中线.
(2)如图,中,,且,是它的对角线,在图2中找出的中点;
(3)图3是在图2的基础上已找出的中点,请作出的边上的中线.
25、(10分)实践与探究
宽与长的比是(约0.618)的矩形叫做黄金矩形。黄金矩形给我们以协调、均匀的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。
下面我们通过折纸得到黄金矩形。
第一步,在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平。
第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平,折痕是。
第三步,折出内侧矩形的对角线,并把折到图3中所示的处,折痕为。
第四步,展平纸片,按照所得的点折出,使;过点折出折痕,使。
(1)上述第三步将折到处后,得到一个四边形,请判断四边形的形状,并说明理由。
(2)上述第四步折出折痕后得到一个四边形,这个四边形是黄金矩形,请你说明理由。(提示:设的长度为2)
(3)在图4中,再找出一个黄金矩形_______________________________(黄金矩形除外,直接写出答案,不需证明,可能参考数值:)
(4)请你举一个采用了黄金矩形设计的世界名建筑_________________________.
26、(12分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.
(1)请你猜想与之间的数量与位置关系,并加以证明;
(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;
(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题解析:如图,连接PA.
∵在△ABC中,AB=6,AC=8,BC=10,
∴BC2=AB2+AC2,
∴∠A=90°.
又∵PE⊥AB于点E,PF⊥AC于点F.
∴∠AEP=∠AFP=90°,
∴四边形PEAF是矩形.
∴AP=EF.
∴当PA最小时,EF也最小,
即当AP⊥CB时,PA最小,
∵AB۰AC=BC۰AP,即AP==4.8,
∴线段EF长的最小值为4.8;
故选B.
考点:1.勾股定理、矩形的判定与性质、垂线段最短.
2、C
【解析】
根据不等式的基本性质,逐个分析即可.
【详解】
若,则 ,,, .
故选C
本题考核知识点:不等式的性质.解题关键点:熟记不等式的基本性质.
3、C
【解析】
根据密铺的条件得,两多边形内角和必须凑出,进而判断即可.
【详解】
解:、正方形的每个内角是,,能密铺;
、正六边形每个内角是,,能密铺;
、正八边形每个内角是,与无论怎样也不能组成的角,不能密铺;
、正十二边形每个内角是,,能密铺.
故选:C.
本题考查两种正多边形的镶嵌应符合多个内角度数和等于.
4、D
【解析】
根据等边三角形的性质和平移的性质即可得到结论.
【详解】
解:∵△OAB是等边三角形,
∵B的坐标为(2,0),
∴A(1,),
∵将△OAB沿直线OB的方向平移至△O′B′A′的位置,此时点B′的横坐标为5,
∴A′的坐标(4,),
故选:D.
本题考查了坐标与图形变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.也考查了等边三角形的性质,含30°角的直角三角形的性质.求出点A′的坐标是解题的关键.
5、D
【解析】
根据二次根式的运算法则即可进行判断.
【详解】
,正确;正确;正确;,正确,故选D.
此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;
.
6、B
【解析】
在平行四边形ABCD中可求出∠C=∠A=75°,利用两直线平行,同旁内角互补可以求∠ABD的度数.
【详解】
在中
,
△BCD是等腰三角形
∠C=∠DBC=75°
又
∠C+∠ABC=180°
即∠C+∠DBC+∠ABD =180°
∠ABD =180°-∠C-∠DBC
=180°-75°-75°
=30°
此题考查了平行四边形的性质、三角形的内角和定义、等腰三角形的性质.
7、A
【解析】试题分析:分别将多项式 与多项式 进行因式分解,再寻找他们的公因式.
本题解析:多项式: ,多项式: ,
则两多项式的公因式为x-1.故选A.
8、D
【解析】
设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.
【详解】
解:设方程另一个根为x1,
∴x1+(﹣1)=2,
解得x1=1.
故选:D.
本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=- ,x1•x2=.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、360°.
【解析】
解:n(n≥3)边形的外角和都等于360°.
10、x<4
【解析】
观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
【详解】
由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
∴不等式kx-3>2x+b的解集是x<4.
故答案为:x<4.
本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
11、30°.
【解析】
由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
【详解】
解:如图所示:
∵四边形ABCD是矩形,
∴∠ADC=90°,OA=AC,OD=BD,AC=BD,
∴OA=OD,
∴∠ODA=∠DAE,
∵∠ADE=∠CDE,
∴∠ADE=×90°=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为30°.
本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
12、
【解析】
按照由特殊到一般的思路,先求出点A 1、B 1;A 2、B 2;A 3、B 3;A 4、B 4的坐标,得出一般规律,进而得出点A n、Bn的坐标,代入即得答案.
【详解】
解:∵直线,x=0时,y=1,∴OA 1=1,
∴点A 1的坐标为(0,1),点B 1的坐标为(1,1),
∵对直线,当x=1时,y=2,∴A 2C 1=2,
∴点A 2的坐标为(1,2),点B 2的坐标为(3,2),
∵对直线,当x=3时,y=4,∴A 3C 2=4,
∴点A 3的坐标为(3,4),点B 3的坐标为(7,4),
∵对直线,当x=7时,y=8,∴A 4C 3=8,
∴点A 4的坐标为(7,8),点B 4的坐标为(15,8),
……
∴点A n的坐标为(2 n ﹣1﹣1,2 n ﹣1), 点B n的坐标为(2 n ﹣1,2 n ﹣1)
∴点的坐标为(2 2019 ﹣1,2 2018)
本题主要考查一次函数图象上点的坐标特征、正方形的性质和规律的探求,解决这类问题一般从特殊情况入手,找出数量上的变化规律,从而推出一般性的结论.
13、1
【解析】
根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.
【详解】
解:如图所示,有1个位置使之成为轴对称图形.
故答案为:1.
本题考查利用轴对称设计图案,关键是掌握轴对称图形沿某条直线折叠,直线两旁的部分能完全重合.
三、解答题(本大题共5个小题,共48分)
14、 (1)2;(2)−a1b−a2b2+ab1.
【解析】
(1)根据0次幂和负整数指数幂,即可解答.
(2)根据单项式乘以多项式,即可解答.
【详解】
(1)(1.12﹣π)0+(﹣)﹣2﹣2×2﹣1
=1+2-2×
=1+2-1
=2.
(2)(2a2+ab-2b2)(-ab)
=−a1b−a2b2+ab1.
本题考查了单项式乘以多项式,解决本题的关键是熟记单项式乘以多项式的法则.
15、(1)8,20 (2)见解析 (3)330人
【解析】
(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;
(2)根据(1)中b的值可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.
【详解】
(1)由频数分布直方图可知,a=8,
b=50-8-12-10=20,
故答案为:8,20;
(2)由(1)知,b=20,
补全的频数分布直方图如图所示;
(3)550×=330(人),
答:该年级学生立定跳远成绩优秀的学生有330人.
本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
16、(1)(2)1;(3)
【解析】
(1)先把二次根式化简,然后合并即可;
(2)根据二次根式的除法法则运算;
(3)利用乘法公式展开,然后合并即可.
【详解】
解:(1)原式=6﹣4+
=2+;
(2)原式=
=4﹣3
=1;
(3)原式
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17、(1)①EG=EH,理由详见解析;②GH平分∠AGE,理由详见解析;(2)①EG=EH,理由详见解析;②∠AGH=∠HGE+∠C,理由详见解析.
【解析】
(1)①由题意可证四边形GHEF是平行四边形,可得∠GHE=∠GFE,由折叠的性质和平行线的性质可证∠GEF=∠HGE,可得结论;
②由平行线的性质可得∠AGH=∠GHE=∠HGE,即可得结论;
(2)①由折叠的性质可得∠CEF=∠C'EF,∠C=∠C',由平行线的性质可得结论;
②∠AGH=∠HGE+∠C,由三角形的外角性质可得结论.
【详解】
(1)①EG=EH,
理由如下:
如图,
∵四边形ABCD是矩形
∴AD∥BC
∴AF∥BE,且GH∥EF
∴四边形GHEF是平行四边形
∴∠GHE=∠GFE
∵将一矩形纸片ABCD沿着EF折叠,
∴∠1=∠GEF
∵AF∥BE,GH∥EF
∴∠1=∠GFE,∠HGE=∠GEF
∴∠GEF=∠HGE
∴∠GHE=∠HGE
∴HE=GE
②GH平分∠AGE
理由如下:
∵AF∥BE
∴∠AGH=∠GHE,且∠GHE=∠HGE
∴∠AGH=∠HGE
∴GH平分∠AGE
(2)①EG=EH
理由如下,
如图,
∵将△ABC沿EF折叠
∴∠CEF=∠C'EF,∠C=∠C'
∵GH∥EF
∴∠GEF=∠HGE,∠FEC'=∠GHE
∴∠GHE=∠HGE
∴EG=EH
②∠AGH=∠HGE+∠C
理由如下:
∵∠AGH=∠GHE+∠C'
∴∠AGH=∠HGE+∠C
本题是四边形综合题,考查了矩形的性质,折叠的性质,平行线的性质,平行四边形的判定和性质,熟练运用这些性质进行推理是本题的关键.
18、(1)20,6;(2)估计年级每个学生的平均睡眠时间约6.3小时
【解析】
分析:(1)由B的人数和所占百分数求出共抽取的人数;再求出E和A的人数,由中位数的定义求出中位数,再将条形统计图补充完整即可;
(2)求出所抽取的20名同学的平均睡眠时间,即可得出结果.
详解:(1)共抽取的同学人数=6÷30%=20(人),
睡眠时间7小时左右的人数=20×=5(人),睡眠时间8小时左右的人数=20﹣6﹣2﹣3﹣5=4(人),
按照睡眠时间从小到大排列,各组人数分别为2,3,6,5,4,睡眠时间分别为4,5,6,7,8,共有20个数据,
第10个和第11个数据都是6小时,它们的平均数也是6小时,
∴同学们的睡眠时间的中位数是6小时左右;
故答案为20,6;
将条形统计图补充完整如图所示:
(2)∵平均数为(4×8+6×6+2×4+3×5+5×7)=6.3(小时),
∴估计年级每个学生的平均睡眠时间约6.3小时.
点睛:本题考查了条形统计呼和扇形统计图以及中位数和平均数的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.3.
【解析】
试题分析:∵3,5,a,4,3的平均数是4,∴(3+5+a+4+3)÷5=4,解得:a=5,
则这组数据的方差S3=[(3﹣4)3+(5﹣4)3+(5﹣4)3+(4﹣4)3+(3﹣4)3]=0.3,故答案为0.3.
考点:3.方差;3.算术平均数.
20、或
【解析】
先根据面积求出三角形在y轴上边的长度,再分正半轴和负半轴两种情况讨论求解.
【详解】
根据题意,一次函数y=kx+b(k≠0)的图象与y轴交点坐标为(0,b),
则×2×|b|=1,
解得|b|=1,
∴b=±1,
①当b=1时,与y轴交点为(0,1),
∴2k+1=0,解得k=-,∴函数解析式为y=-x+1;
②当b=-1时,与y轴的交点为(0,-1),
∴2k-1=0,解得k=,∴函数解析式为y=-x-1,
综上,这个一次函数的解析式是或,
故答案为:或.
本题考查了待定系数法求一次函数解析式,先根据三角形面积求出与y轴的交点,再利用待定系数法求函数解析式,本题需要注意有两种情况.
21、4
【解析】
根据算术平方根的定义解答即可.
【详解】
=4.
故答案为:4.
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.
22、20.
【解析】
分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.
解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,
FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.
点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.
23、1
【解析】
根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.
【详解】
在Rt△ABC中,∠A=30°,BC=1,
∴AB=2BC=2,
∵点D,E分别是直角边BC,AC的中点,
∴DE=AB=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析;(3)见解析
【解析】
(1)根据三角形的三条中线交于一点即可解决问题.
(2)延长AD,BC交于点K,连接AC交BD于点O,作直线OK交AB于点E,点E即为所求.
(3)连接EC交BD于K,连接AK,DE交于点O,作直线OB交AD于F,线段BF即为所求
【详解】
(1)图1中,中线CE即为所求.
(2)如图2中,AB的中点E即为所求
(3)图3中,AD边上中线BF即为所求.
本题考查作图-复杂作图,三角形的中线等知识,解题的关键是灵活运用所学知识解决问题.
25、(1)四边形是菱形,见解析;(2)见解析;(3)黄金矩形(或黄金矩形);(4)希腊的巴特农神庙(或巴黎圣母院).
【解析】
(1)根据菱形的判定即可求解;
(2)根据菱形的性质及折叠得到,即可证明;
(3)
【详解】
(1)解:
四边形是菱形,
理由如下:
由矩形纸片可得,
∴,
由折叠可得,
∴,
∴,
又由折叠可得,
∴,
∴四边形是菱形;
(2)证明:设的长度为2,
由正方形可得,,
∴,
∵,
∴,
∴,
∴四边形是矩形,
∵,由折叠可得,,
在中,根据勾股定理,,
由折叠可得,
∴,
∴,
∴矩形是黄金矩形;
(3)黄金矩形
理由:AG=AD+DG=AB+DG=
AH=2,
∴
∴四边形AGEH为黄金矩形
(4)希腊的巴特农神庙(或巴黎圣母院)
此题主要考查矩形的性质与判定,解题的关键是熟知特殊平行四边形的判定与性质.
26、(1),,其理由见解析;(2);(3)6
【解析】
(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;
(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;
(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.
【详解】
(1)
证明:,,其理由是:
在正方形和正方形中,
有,,,
∴≌,∴,,
∵,∴
延长交于,则,
∴.
(2)
解:在正方形和正方形中,
有,,,
∴
∴≌,∴
连接交于,则,
∴,,
∴
∴
(3)
与面积之和的最大值为6,其理由是:
对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:
对于△EGH,点H在以EG为直径的圆上,
∴当点H与点A重合时,△EGH的高最大;
对于△BDH,点H在以BD为直径的圆上,
∴当点H与点A重合时,△BDH的高最大,
则△GHE和△BHD面积之和的最大值为2+4=6.
本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
这是一份2024年江苏省苏州市苏州工业园区星海实验初级中学九年级中考二模数学试题,共4页。
这是一份江苏省苏州市工业园区星海实验中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,结果正确的是,已知,方程的解是等内容,欢迎下载使用。
这是一份2022-2023学年江苏省苏州市工业园区星海实验中学数学七下期末调研模拟试题含答案,共7页。试卷主要包含了若,则的值为,不等式>﹣1的正整数解的个数是等内容,欢迎下载使用。