终身会员
搜索
    上传资料 赚现金

    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】

    立即下载
    加入资料篮
    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】第1页
    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】第2页
    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】

    展开

    这是一份2024年江苏省苏州市吴中学区统考九年级数学第一学期开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,购买一种苹果,所付款金额(单元:元)与购买量(单位:千克)之间的函数图像由线段和射线组成,则一次购买千克这种苹果,比分五次购买,每次购买千克这种苹果可节省( )
    A.元B.元C.元D.元
    2、(4分)下列计算正确的是( )
    A.=2B.C.D.
    3、(4分)一个三角形三边的比为1:2:,则这个三角形是( )
    A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形
    4、(4分)下列二次根式中,与是同类二次根式的是
    A.B.C.D.
    5、(4分)在△ABC中,∠A:∠B:∠C=1:1:2,则下列说法错误的是( )
    A.a2+c2=b2B.c2=2a2C.a=bD.∠C=90°
    6、(4分)在平面直角坐标系中,直线:与轴交于点,如图所示依次作正方形、正方形、、正方形,使得点在直线上,点在轴正半轴上,则点的坐标是( )
    A.,)B.,
    C.,D.,
    7、(4分)下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为 ( )
    A.87B.77C.70D.60
    8、(4分)下列性质中,菱形具有而矩形不一定具有的是( ).
    A.对角线相等;B.对角线互相平分;
    C.对角线互相垂直;D.对角相等
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.
    10、(4分)已知x、y为直角三角形两边的长,满足,则第三边的长为________.
    11、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
    12、(4分)在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要____分的时间.
    13、(4分)某校四个植树小队,在植树节这天种下柏树的棵数分别为10,x,10,8,若这组数据的中位数和平均数相等,那么x=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).
    (1)求一次函数和反比例函数解析式.
    (2)若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.
    (3)根据图象,直接写出不等式的解集.
    15、(8分) (1)
    (2)
    16、(8分)已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.
    (1)利用图①证明:EF=2BC.
    (2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.
    17、(10分)耒阳市某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
    请根据图中提供的信息,完成下列问题:
    (1)在这次问卷调查中,喜欢“科普书籍”出现的频率为 ;
    (2)补全条形图;
    (3)求在扇形统计图中,喜欢“科普书籍”的所占的圆心角度数;
    (4)如果全校共有学生1500名,请估计该校最喜欢“科普”书籍的学生约有多少人?
    18、(10分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).
    阅读时间分组统计表
    请结合以上信息解答下列问题:
    (1)求a,b,c的值;
    (2)补全“阅读人数分组统计图”;
    (3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知a=﹣,b=+,求a2+b2的值为_____.
    20、(4分)若一组数据,,,,的众数是,则这组数据的方差是__________.
    21、(4分)一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.15、0.3,则第四组数据的个数为______.
    22、(4分)如图,的对角线、相交于点,经过点,分别交、于点、,已知的面积是,则图中阴影部分的面积是_____.
    23、(4分)已知,如图,正方形ABCD的面积为25,菱形PQCB的面积为20,则阴影部分的面积为________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读下列材料并解答问题:
    数学中有很多恒等式可以用图形的面积来得到例如,图1中阴影部分的面积可表示为;若将阴影部分剪下来,重新拼成一个矩形如图,它的长,宽分别是,,由图1,图2中阴影部分的面积相等,可得恒等式.
    (1)观察图3,根据图形,写出一个代数恒等式:______;
    (2)现有若干块长方形和正方形硬纸片如图4所示请你仿照图3,用拼图的方法推出恒等式,画出你的拼图并标出相关数据;
    (3)利用前面推出的恒等式和计算:
    ①;
    ②.
    25、(10分)若m,n,p满足m-n=8,mn+p2+16=0,求m+n+p的值?
    26、(12分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
    请结合图表完成下列各题:
    (1)求表中a的值;
    (2)请把频数分布直方图补充完整;
    (3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    可由函数图像计算出2千克以内每千克的价钱,超出2千克后每千克的价钱,再分别计算出一次购买千克和分五次购买各自所付款金额.
    【详解】
    解:由图像可得2千克以内每千克的价钱为:(元),超出2千克后每千克的价钱为:(元),一次购买千克所付款金额为:(元),分五次购买所付款金额为:(元),可节省(元).
    本题考查了函数的图像,正确从函数图像获取信息是解题的关键.
    2、C
    【解析】
    根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.
    【详解】
    A. =4,故A选项错误;
    B. 与不是同类二次根式,不能合并,故B选项错误;
    C. ,故C选项正确;
    D. =,故D选项错误,
    故选C.
    本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.
    3、B
    【解析】
    由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:这个三角形是直角三角形,理由如下:
    因为边长之比满足1:2:,
    设三边分别为x、2x、x,
    ∵(x)2+(2x)²=(x)²,
    即满足两边的平方和等于第三边的平方,
    ∴它是直角三角形.
    故选B.
    本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
    4、D
    【解析】
    先将各选项化简,再根据同类二次根式的定义解答.
    【详解】
    解:A、与被开方数不同,不是同类二次根式,故本选项错误;
    B、=3是整数,故选项错误;
    C、=与的被开方数不同,不是同类二次根式,故本选项错误;
    D、与被开方数相同,是同类二次根式,故本选项正确.
    故选:D.
    本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
    5、A
    【解析】
    根据三角形内角和定理分别求出∠A、∠B、∠C,根据勾股定理、等腰三角形的概念判断即可.
    【详解】
    设∠A、∠B、∠C分别为x、x、2x,
    则x+x+2x=180°,
    解得,x=45°,
    ∴∠A、∠B、∠C分别为45°、45°、90°,
    ∴a2+b2=c2,A错误,符合题意,
    c2=2a2,B正确,不符合题意;
    a=b,C正确,不符合题意;
    ∠C=90°,D正确,不符合题意;
    故选:A.
    考查的是三角形内角和定理、勾股定理,掌握三角形内角和等于180°是解题的关键.
    6、C
    【解析】
    根据一次函数图象上点的坐标特征找出A 、A 、A 、A 的坐标,结合图形即可得知点B 是线段CA的中点,由此即可得出点 的坐标.
    【详解】
    观察,发现:A (1,0),A (2,1),A (4,3),A (8,7),…,
    ∴A (2 ,2−1)(n为正整数).
    观察图形可知:点B是线段CA 的中点,
    ∴点B的坐标是(2 ,2−1).
    ∴点的坐标是(2 ,2 −1).
    故答案为:,
    此题考查一次函数图象上点的坐标特征,规律型:点的坐标,解题关键在于找到规律
    7、D
    【解析】
    分析:要找这个小房子的规律,可以分为两部分来看:第一个屋顶是3,第二个屋顶是3.第三个屋顶是2.以此类推,第n个屋顶是2n-3.第一个下边是4.第二个下边是5.第三个下边是36.以此类推,第n个下边是(n+3)2个.两部分相加即可得出第n个小房子用的石子数是(n+3)2+2n-3=n2+4n,将n=7代入求值即可.
    详解:该小房子用的石子数可以分两部分找规律:
    屋顶:第一个是3,第二个是3,第三个是2,…,以此类推,第n个是2n-3;
    下边:第一个是4,第二个是5,第三个是36,…,以此类推,第n个是(n+3)2个.
    所以共有(n+3)2+2n-3=n2+4n.
    当n=6时,
    n2+4n=60,
    故选:D.
    点睛:本题考查了图形的变化类,分清楚每一个小房子所用的石子个数,主要培养学生的观察能力和空间想象能力.
    8、C
    【解析】
    根据矩形和菱形的性质即可得出答案
    【详解】
    解:A. 对角线相等是矩形具有的性质,菱形不一定具有;
    B. 对角线互相平分是菱形和矩形共有的性质;
    C. 对角线互相垂直是菱形具有的性质,矩形不一定具有;
    D. 邻边互相垂直是矩形具有的性质,菱形不一定具有.
    故选:C.
    本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、x<4
    【解析】
    观察图象,函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值即为不等式kx-3>2x+b的解集.
    【详解】
    由图象可得,当函数y=kx-3的图象位于函数y=2x+b图象的上方时对应x的取值为x<4,
    ∴不等式kx-3>2x+b的解集是x<4.
    故答案为:x<4.
    本题主要考查一次函数和一元一次不等式,解题的关键是利用数形结合思想.
    10、、或.
    【解析】
    试题分析:∵|x2-4|≥0,,
    ∴x2-4=0,y2-5y+6=0,
    ∴x=2或-2(舍去),y=2或3,
    ①当两直角边是2时,三角形是直角三角形,则斜边的长为:;
    ②当2,3均为直角边时,斜边为;
    ③当2为一直角边,3为斜边时,则第三边是直角,长是.
    考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理.
    11、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:∵S甲2=0.18,S乙2=0.32,
    ∴S甲2<S乙2,
    ∴身高较整齐的球队是甲;
    故答案为:甲.
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、1
    【解析】
    运用勾股定理可求出斜边AB的长,然后可求出直角三角形的周长即蜗牛所走的总路程,再除以蜗牛的行走速度即可求出所需的时间.
    【详解】
    解:由题意得,100cm,
    ∴AB=100cm;
    ∴CA+AB+BC=60+80+100=240cm,
    ∴240÷20=1(分).
    故答案为1.
    本题考查了速度、时间、路程之间的关系式及勾股定理的应用,考查了利用勾股定理解直角三角形的能力.
    13、12或1
    【解析】
    先根据中位数和平均数的概念得到平均数等于 ,由题意得到=10或9,解出x即可.
    【详解】
    ∵这组数据的中位数和平均数相等,
    ∴=10或9,
    解得:x=12或1,
    故答案是:12或1.
    考查了中位数的概念:一组数据按从小到大排列,最中间那个数(或最中间两个数的平均数)就是这组数据的中位数.
    三、解答题(本大题共5个小题,共48分)
    14、(1)y=﹣x+,y=;(2)12;(3) x<﹣2或0<x<4.
    【解析】
    (1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.
    【详解】
    (1)∵一次函数y=﹣x+b的图象与反比例函数y= (k≠0)图象交于A(﹣3,2)、B两点,
    ∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6
    ∴b=,k=﹣6
    ∴一次函数解析式y=﹣,反比例函数解析式y=.
    (2)根据题意得: ,
    解得: ,
    ∴S△ABF=×4×(4+2)=12
    (3)由图象可得:x<﹣2或0<x<4
    本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.
    15、(1)x1=−3,x2=3;(2)x1=,x2=1.
    【解析】
    (1)先移项得到2x(x+3)−6(x+3)=0,然后利用因式分解法解方程;
    (2)先把方程整理为一般式,然后利用因式分解法解方程.
    【详解】
    解:(1)2x(x+3)−6(x+3)=0,
    (x+3)(2x−6)=0,
    x+3=0或2x−6=0,
    所以x1=−3,x2=3;
    (2)
    2x2+3x−5=0,
    (2x+5)(x−1)=0,
    2x+5=0或x−1=0,
    所以x1=,x2=1.
    本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.
    16、(1)详见解析;(2)成立,证明见解析.
    【解析】
    (1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;
    (2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.
    【详解】
    (1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
    ∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.
    (2)成立.证明如下:
    ∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.
    ∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.
    ∵EF=2BC,∴BE+CF=BC.
    又∵AH+CH=AC,AC=BC,∴AH=BE.
    本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.
    17、(1)0.25;(2)见解析;(3)90°;(4)375人
    【解析】
    (1)根据扇形图可知“科普书籍”出现的频率为1-其他的百分比-文艺的百分比-体育的百分比求解即可;
    (2)选取其他、文艺或体育任意条形图数据结合扇形百分比求出全体人数,再根据(1)科普的频数即可确定人数,据此补全图形即可;
    (3)根据喜欢“科普书籍”的所占圆心角度数=喜欢“科普书籍”的百分比×360°求解即可;
    (4)根据该校最喜欢“科普”书籍的学生数=该校学生数×喜欢“科普”的百分比求解即可.
    【详解】
    解:(1)“科普书籍”出现的频率=1-20%-15%-40%=25%=0.25,故答案为0.25;
    (2)调查的全体人数=人,
    所以喜欢科普书籍的人数=人,如图;
    (3)喜欢“科普书籍”的所占的圆心角度数=0.25×360°=90°
    (4)该校最喜欢“科普”书籍的学生约有0.25×1500=375人.
    本题考查的是统计相关知识,能够结合扇形图和条形图共解问题是解题的关键.
    18、 (1)20,200,40;(2)补全图形见解析;(3) 24%.
    【解析】
    分析:(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得:进而求得b的值;
    (2)根据(1)的结果即可作出;
    (3)根据百分比的定义即可求解.
    详解:(1)由图表可知,调查的总人数为 140÷28%=500(人),
    ∴b=500×40%=200,
    c=500×8%=40,
    则a=500-(100+200+140+40)=20,
    (2)补全图形如图所示.
    (3)由(1)可知×100%=24% .
    答:估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比为24%.
    点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    把已知条件代入求值.
    【详解】
    解:原式=
    =.
    故答案是:1.
    直接代入即可,也可先求出a+b、ab的值,原式=(a+b)2﹣2ab,再整体代入.
    20、13.1
    【解析】
    首先根据众数的定义求出的值,进而利用方差公式得出答案.
    【详解】
    解:数据0,,8,1,的众数是,



    故答案为:13.1.
    此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.
    21、2
    【解析】
    先根据各小组的频率和是2,求得第四组的频率;再根据频率=频数÷数据总数,进行计算即可得出第四组数据的个数.
    【详解】
    解:∵一组数据共有50个,分成四组后其中前三组的频率分别是0.25、0.2、0.3,
    ∴第四组的频率为:2-0.25-0.2-0.3=0.3,
    ∴第四组数据的个数为:50×0.3=2.
    故答案为2.
    本题考查频率与频数,用到的知识点:频率=频数:数据总数,各小组的频率和是2.
    22、
    【解析】
    只要证明,可得,即可解决问题.
    【详解】
    四边形是平行四边形,
    ,,



    .
    故答案为:.
    本题考查平行四边形的性质。全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    23、1
    【解析】
    由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.
    【详解】
    ∵正方形ABCD的面积是25,
    ∴AB=BC=BP=PQ=QC=5,
    又∵S菱形PQCB=PQ×EC=5×EC=20,
    ∴S菱形PQCB=BC•EC,
    即20=5•EC,
    ∴EC=4,
    在Rt△QEC中,EQ==3;
    ∴PE=PQ-EQ=2,
    ∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.
    故答案为1.
    此题主要考查了菱形的性质和面积计算以及正方形的性质,根据已知得出EC=8,进而求出EQ的长是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1);(2);(3)①1;②.
    【解析】
    (1)根据面积的两种表达方式得到图3所表示的代数恒等式;
    (2)作边长为a+b的正方形即可得;
    (3)套用所得公式计算可得.
    【详解】
    解:(1)由图3知,等式为:,
    故答案为;
    (2)如图所示:
    由图可得;
    (3)①原式;
    ②.
    本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.
    25、m+n+p=0.
    【解析】
    试题分析:把m,n,p看成是未知数,本题已知两个方程求三个未知数,因此可以采用主元法,将其中一个未知数看成常数,另外两个当作未知数进行解答,本题由m-n=8,可得:
    m=n+8,把m=n+8代入mn+p2+16=0,得n2+8n+16+p2=0,即(n+4)2+p2=0,根据非负数的非负性质可求出n=-4,p=0,所以m=4,因此m+n+p=4+(-4)+0=0.
    因为m-n=8,所以m=n+8.
    将m=n+8代入mn+p2+16=0中,得n(n+8)+p2+16=0,所以n2+8n+16+p2=0,即(n+4)2+p2=0.
    又因为(n+4)2≥0,p2≥0,
    所以,解得,所以m=n+8=4,
    所以m+n+p=4+(-4)+0=0.
    26、(1)16;(2)详见解析;(3)52%
    【解析】
    (1)直接总数减去其他组的人数,即可得到a
    (2)直接补充图形即可
    (3)先算出不低于40分的人数,然后除以总人数即可
    【详解】
    (1)a=50-4-6-14-10= 16
    (2)如图所示.
    (3)本次测试的优秀率是=52%
    答:本次测试的优秀率是52%
    本题主要考查频数分布直方图,比较简单,基础知识扎实是解题关键
    题号





    总分
    得分
    批阅人
    组别
    阅读时间x(h)
    人数
    A
    0≤x<10
    a
    B
    10≤x<20
    100
    C
    20≤x<30
    b
    D
    30≤x<40
    140
    E
    x≥40
    c
    组别
    成绩x分
    频数(人数)
    第1组
    25≤x<30
    4
    第2组
    30≤x<35
    6
    第3组
    35≤x<40
    14
    第4组
    40≤x<45
    a
    第5组
    45≤x<50
    10

    相关试卷

    2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案:

    这是一份2023-2024学年江苏省苏州市吴中学区统考数学九上期末预测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数的最小值是,如图,四边形内接于,若,则等内容,欢迎下载使用。

    江苏省苏州市吴中学区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份江苏省苏州市吴中学区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了如图,,则下列比例式错误的是,关于二次函数,下列说法错误的是,如图所示几何体的主视图是等内容,欢迎下载使用。

    2023-2024学年江苏省苏州市吴中学区横泾中学数学九年级第一学期期末统考模拟试题含答案:

    这是一份2023-2024学年江苏省苏州市吴中学区横泾中学数学九年级第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,对于反比例函数y=, 见解析,B2,C2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map