2024年江苏省苏州市新草桥中学数学九上开学学业质量监测试题【含答案】
展开这是一份2024年江苏省苏州市新草桥中学数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列四组线段中,不能作为直角三角形三条边的是( )
A.3cm,4cm,5cmB.2cm,2cm,2cmC.2cm,5cm,6cmD.5cm,12cm,13cm
2、(4分)若将0.0000065用科学记数法表示为6.5×10n,则n等于( )
A.﹣5B.﹣6C.﹣7D.﹣8
3、(4分)已知一次函数与的图象如图,则下列结论:①;②;③关于的方程的解为;④当时,,其中正确的个数是
A.1B.2C.3D.4
4、(4分)已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是( )
A.a2+b2=c2B.∠A+∠B=90°
C.a=3,b=4,c=5D.∠A:∠B:∠C=3:4:5
5、(4分)下列命题正确的是( )
A.对角线互相垂直的四边形是菱形
B.一组对边相等,另一组对边平行的四边形是平行四边形
C.对角线相等的四边形是矩形
D.对角线互相垂直平分且相等的四边形是正方形
6、(4分)如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是( )
A.3B.4C.5D.6
7、(4分)若分式有意义,则实数的取值范围是( )
A.B.C.D.
8、(4分)若a>b,则下列各式不成立的是( )
A.a﹣1>b﹣2B.5a>5bC.﹣a>﹣bD.a﹣b>0
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,已知点,直线与线段有交点,则的取值范围为__________.
10、(4分)如图,菱形的周长为20,对角线的长为6,则对角线的长为______.
11、(4分)如图,△ABC中,AB>AC,D,E两点分别在边AC,AB上,且DE与BC不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)
12、(4分)若双曲线在第二、四象限,则直线y=kx+2不经过第 _____象限。
13、(4分)已知x+y=﹣1,xy=3,则x2y+xy2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在图1,图2中,点E是矩形ABCD边AD上的中点,请用无刻度的直尺按下列要求画图(保留画图痕迹,不写画法)
(1)在图1中,以BC为一边画△PBC,使△PBC的面积等于矩形ABCD的面积.
(2)在图2中,以BE、ED为邻边画▱BEDK.
15、(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,
求证:四边形OCED是菱形.
16、(8分)某经销商从市场得知如下信息:
他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.
(1)试写出y与x之间的函数关系式;
(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;
(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.
17、(10分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.
18、(10分)先化简,再求值:,其中- 1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.
20、(4分)一次函数的图象如图所示,不等式的解集为__________.
21、(4分)如图,▱ABCD中,,,垂足为点若,则的度数为______.
22、(4分)2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.
23、(4分)从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:
根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,
(1)证明:CF=EB.
(2)证明:AB=AF+2EB.
25、(10分)中, 分别是 上的不动点.且 ,点 是 上的一动点.
(1)当 时(如图1),求 的度数;
(2)若 时(如图2),求 的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.
26、(12分)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A′E′F′.
(1)求EF的长;
(2)设P,P′分别是EF,E′F′的中点,当点A′与点B重合时,求证四边形PP′CD是平行四边形,并求出四边形PP′CD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:要判断是否为直角三角形,需验证两小边的平方和是否等于最长边的平方.
详解:A、3²+4²=5²,能构成直角三角形,不符合题意;
B、2²+2²=,能构成直角三角形,不符合题意;
C、2²+5²≠6²,不能构成直角三角形,符合题意;
D、5²+12²=13²,能构成直角三角形,不符合题意.
故选C.
点睛:本题考查了勾股定理的逆定理:已知△ABC的三边满足a²+b²=c²,则△ABC是直角三角形.
2、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000065=6.5×10﹣6,
则n=﹣6,
故选:B.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
3、C
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y1=x+a在直线y2=kx+b的上方,则可对④进行判断.
【详解】
一次函数经过第一、二、四象限,
,,所以①正确;
直线的图象与轴交于负半轴,
,,所以②错误;
一次函数与的图象的交点的横坐标为2,
时,,所以③正确;
当时,,所以④正确.
故选.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.
4、D
【解析】
分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.
详解:A. a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;
B. ∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;
C. 52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;
D. ∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;
故选D.
点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.
5、D
【解析】
试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;
B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;
C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;
D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.
故选D.
考点:命题与定理.
6、B
【解析】
解:设两个阴影部分三角形的底为AD,CB,高分别为h1,h2,则h1+h2为平行四边形的高,
∴
=4
故选:B
本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.
7、B
【解析】
分式有意义,则,求出x的取值范围即可.
【详解】
∵分式有意义,
∴,
解得:,
故选B.
本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.
8、C
【解析】
根据不等式的性质,可得答案.
【详解】
解:A、a−1>a−2>b−2,故A成立,故A不符合题意;
B、5a>5b,故B成立,故B不符合题意;
C、两边都乘,不等号的方向改变,﹣a﹣b, 故C不成立,故C符合题意,
D、两边都减b,a﹣b>0,故D成立,故D不符合题意;
故选C.
本题考查了不等式的性质,熟记不等式的性质是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
要使直线与线段AB交点,则首先当直线过A是求得k的最大值,当直线过B点时,k取得最小值.因此代入计算即可.
【详解】
解:当直线过A点时, 解得
当直线过B点时, 解得
所以要使直线与线段AB有交点,则
故答案为:
本题主要考查正比例函数的与直线相交求解参数的问题,这类题型是考试的热点,应当熟练掌握.
10、8
【解析】
利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.
【详解】
如图,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO
∵BD=6,
∴BO=3,
∵周长为20,
∴AB=5,
由勾股定理得:AO==4,
∴AC=8,
故答案为:8
本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.
11、∠B=∠1或
【解析】
此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.
【详解】
此题答案不唯一,如∠B=∠1或.
∵∠B=∠1,∠A=∠A,
∴△ADE∽△ABC;
∵,∠A=∠A,
∴△ADE∽△ABC;
故答案为∠B=∠1或
此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题.
12、三
【解析】
分析:首先根据反比例函数的图像得出k的取值范围,然后得出直线所经过的象限.
详解:∵反比例函数在二、四象限, ∴k<0, ∴y=kx+2经过一、二、四象限,即不经过第三象限.
点睛:本题主要考查的是一次函数和反比例函数的图像,属于基础题型.对于反比例函数,当k>0时,函数经过一、三象限,当k<0时,函数经过二、四象限;对于一次函数y=kx+b,当k>0,b>0时,函数经过一、二、三象限;当k>0,b<0时,函数经过一、三、四象限;当k<0,b>0时,函数经过一、二、四象限;当k<0,b<0时,函数经过二、三、四象限.
13、-1
【解析】
直接利用提取公因式法分解因式,进而把已知数据代入求出答案.
【详解】
解:∵x+y=﹣1,xy=1,∴x2y+xy2=xy(x+y)
=1×(﹣1)
=﹣1.
故答案为﹣1.
本题主要考查了提取公因式法分解因式,正确分解因式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)详见解析
【解析】
(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;
(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到平行四边形BEDK.
【详解】
解:(1)图1中△PBC为所画;
(2)图2中▱BEDK为所画.
本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形。
15、见解析
【解析】
首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.
【详解】
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,∴OC=OD=AC=BD
∴四边形OCED是菱形.
16、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.
【解析】
(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;
(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;
(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.
【详解】
解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000.
由700x+100(100﹣x)≤40000得x≤50.
∴y与x之间的函数关系式为y=140x+6000(x≤50)
(2)令y≥12600,即140x+6000≥12600,
解得x≥47.1.
又∵x≤50,∴经销商有以下三种进货方案:
(3)∵140>0,∴y随x的增大而增大.
∴x=50时y取得最大值.
又∵140×50+6000=13000,
∴选择方案③进货时,经销商可获利最大,最大利润是13000元.
本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.
17、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)
【解析】
(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;
(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;
(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;
(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,
【详解】
解:
(1)设反比例函数的解析式y=,
∵反比例函数的图象过点E(3,4),
∴4=,即k=12,
∴反比例函数的解析式y=;
(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4,
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3),
∵点D在直线y=﹣x+b上,
∴3=﹣×4+b,
解得:b=5,
∴直线DF为y=﹣x+5,
将y=4代入y=﹣x+5,
得4=﹣x+5,
解得:x=2,
∴点F的坐标为(2,4),
(3)∠AOF=∠EOC,理由为:
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,
,
∴△OAF≌△OCG(SAS),
∴∠AOF=∠COG,
,
∴△EGB≌△HGC(ASA),
∴EG=HG,
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
∴,
解得,
∴直线EG:y=﹣2x+10,
令y=﹣2x+10=0,得x=5,
∴H(5,0),OH=5,
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,
∴OH=OE,
∴OG是等腰三角形底边EH上的中线,
∴OG是等腰三角形顶角的平分线,
∴∠EOG=∠GOH,
∴∠EOG=∠GOC=∠AOF,
即∠AOF=∠EOC;
(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,
则△DPK≌△QDK,
设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),
把(7,-1+a)代入y=得:
7(-1+a)=12,
解得:a=,
则P的坐标是(,0);
当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PDK,
则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,
则Q的坐标是(1,7-b),代入y=得:
b=-5,
则P的坐标是(-5,0);
当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PQK,则DK=DL=3,
设Q的横坐标是c,则纵坐标是,
则QK=QL=,
又∵QL=c-4,
∴c-4=,
解得:c=-2(舍去)或6,
则PK=DL=DR-LR=DR-QK=3-=1,
∴OP=OK-PK=6-1=5,
则P的坐标是(5,0);
当Q在D的左侧(如图3),且∠DQP=90°时,不成立;
当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,
则△DPR≌△PQK,
∴DR=PK=3,RP=QK,
设P的坐标是(d,0),
则RK=QK=d-4,
则OK=OP+PK=d+3,
则Q的坐标是(d+3,d-4),代入y=得:
(d+3)(d-4)=12,
解得:d=或(舍去),
则P的坐标是(,0),
综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),
本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.
18、
【解析】
试题分析:先根据分式混合运算的法则把原式进行化简,然后代入计算即可.
试题解析:解:原式==
当x=时,原式==.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x<2.
【解析】
根据不等式与函数的关系由图像直接得出即可.
【详解】
由图可得关于的不等式的解集为x<2.
故填:x<2.
此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.
20、
【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.
【详解】
解:根据图象可得:
解得:
所以可得一次函数的直线方程为:
所以可得 ,解得:
故答案为
本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.
21、25°
【解析】
由等腰三角形性质得∠ACB=∠B=由平行四边形性质得∠DAE=∠ACB=65〬,由垂直定义得∠ADE=90〬-∠DAE=90〬-65〬.
【详解】
因为,,
所以,∠ACB=∠B=
因为,四边形ABCD是平行四边形,
所以,AD∥BC,
所以,∠DAE=∠ACB=65〬,
又因为,,
所以,∠ADE=90〬-∠DAE=90〬-65〬=25〬.
故答案为25〬
本题考核知识点:平行四边形,等腰三角形,垂直定义. 解题关键点:由所求推出必知,逐步解决问题.
22、x(x﹣1)=1
【解析】
设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛1场,可列出方程.
【详解】
设参赛队伍有x支,根据题意得:
x(x﹣1)=1
故答案为x(x﹣1)=1.
本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.
23、1.2
【解析】
仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.
【详解】
∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,
∴该玉米种子发芽的概率为1.2,
故答案为1.2.
考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)证明见解析.
【解析】
(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;
(2)利用角平分线性质证明Rt△ADC≌Rt△ADE,AC=AE,再将线段AB进行转化.
【详解】
证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DC=DE.
在Rt△ADC与Rt△ADE中,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
本题主要考查角平分线的性质、全等三角形的判定和性质,角平分线上的点到角两边的距离相等,斜边和一直角边对应相等的两个直角三角形全等,掌握这两个知识点是解题的关键.
25、(1);(2)相同,.
【解析】
(1)根据等腰三角形的性质和三角形的内角和即可得到结论;
(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.
【详解】
(1)
(2)相同,理由是:
又
本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.
26、(1)2;(2)28.
【解析】
(1)首先求出AF的长度,再在直角三角形AEF中求出EF的长度;
(2)连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH的长,最后根据面积公式求出答案.
【详解】
(1)∵四边形ABCD是菱形,
∴AD=AB=8,
∵F是AB的中点,
∴AF=AB=×8=4,
∵点F作FE⊥AD,∠A=60°,
∴∠AFE=30°,
∴AE=,
∴EF=2;
(2)如图,连接BD,DF,DF交PP′于H.
由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四边形PP′CD是平行四边形,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD是等边三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2,
∴PE=PF=,
在Rt△PHF中,∵∠FPH=30°,PF=,
∴HF=PF=,
∵DF==4,
∴DH=4﹣=,
∴平行四边形PP′CD的面积=×8=28.
本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.
题号
一
二
三
四
五
总分
得分
A品牌手表
B品牌手表
进价(元/块)
700
100
售价(元/块)
900
160
种子粒数
100
400
800
1 000
2 000
5 000
发芽种子粒数
85
318
652
793
1 604
4 005
发芽频率
0.850
0.795
0.815
0.793
0.802
0.801
方案
A品牌(块)
B品牌(块)
①
48
52
②
49
51
③
50
50
相关试卷
这是一份2024年河北省石家庄精英中学数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省中学山市中学山纪念中学数学九上开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省济宁市鲁桥一中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。