2024年江苏省泰兴市西城中学数学九上开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数据中,能构成直角三角形的三边边长的是( )
A.l,2,3B.6,8,10C.2,3,4D.9,13,17
2、(4分)用配方法解方程x2﹣8x+7=0,配方后可得( )
A.(x﹣4)2=9B.(x﹣4)2=23
C.(x﹣4)2=16D.(x+4)2=9
3、(4分)把分式中、的值都扩大为原来的2倍,分式的值( )
A.缩小为原来的一半B.扩大为原来的2倍
C.扩大为原来的4倍D.不变
4、(4分)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
A.B.C.D.
5、(4分)下列语句:①每一个外角都等于的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( )
A.1B.2C.3D.4
6、(4分)若式子的值等于0,则x的值为( )
A.±2B.-2C.2D.-4
7、(4分)一个三角形三边的比为1:2:,则这个三角形是( )
A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形
8、(4分)向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)下表记录了某校4名同学游泳选拨赛成绩的平均数与方差:
根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择__________.
10、(4分)如图,正方形 ABCD 的顶点 C, A 分别在 x 轴, y 轴上, BC 是菱形 BDCE 的对角线.若 BC 6, BD 5, 则点 D 的坐标是_____.
11、(4分)如图,直线、、、互相平行,直线、、、互相平行,四边形面积为,四边形面积为,则四边形面积为__________.
12、(4分)如图,将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°的三角板的一条直角边重合,则∠1的度数为______.
13、(4分)若关于 x 的分式方程的解为正数,则 m 的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,
(1)求v关于t的函数表达式,并写出自变量t的取值范围;
(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
15、(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).
(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.
(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.
16、(8分)已知BD是△ABC的角平分线,ED⊥BC,∠BAC=90°,∠C=30°.
(1)求证:CE=BE;
(2)若AD=3,求△ABC的面积.
17、(10分)问题背景:对于形如这样的二次三项式,可以直接用完全平方公式将它分解成,对于二次三项式,就不能直接用完全平方公式分解因式了.此时常采用将加上一项,使它与的和成为一个完全平方式,再减去,整个式子的值不变,于是有:
=
====
问题解决:
(1)请你按照上面的方法分解因式:;
(2)已知一个长方形的面积为,长为,求这个长方形的宽.
18、(10分)南开两江中学校初一年级在3月18日听了一堂“树的畅想”的景观设计课,随后在本年级学生中进行了活动收获度调查,采取随机抽样的调查方式进行网络问卷调查,问卷调查的结果分为“非常有收获”“比较有收获”“收获一般”“没有太大的收获”四个等级,分别记作A、B、C、D并根据调查结果绘制两幅不完整统计图:
(1)这次一共调查了_______名学生,并将条形统计图补充完整
(2)请在参与调查的这些学生中,随机抽取一名学生,求抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
20、(4分)在平行四边形ABCD中,AD=13,BAD和ADC的角平分线分别交BC于E,F,且EF=6,则平行四边形的周长是____________________
21、(4分)计算__________.
22、(4分)如图,是等边三角形内一点,将线段绕点顺时针旋转60°得到线段,连接.若,,,则四边形的面积为___________.
23、(4分)已知直线过点和点,那么关于的方程的解是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
25、(10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
(1)写出男生鞋号数据的平均数,中位数,众数;
(2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
26、(12分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:
(1)求y1与y2的函数关系式;
(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?
(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理逆定理即可求解.
【详解】
A. 12+22=5,32=9,故不能构成直角三角形;
B. 62+82=102,故为直角三角形;
C. 22+32≠42,故不能构成直角三角形;
D. 92+132≠172,故不能构成直角三角形;
故选B.
此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的逆定理.
2、A
【解析】
首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.
【详解】
解:x2﹣8x+7=0,
x2﹣8x=﹣7,
x2﹣8x+16=﹣7+16,
(x﹣4)2=9,
故选:A.
本题考查了解一元二次方程--配方法.配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
3、D
【解析】
根据分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变,可得答案.
【详解】
把分式中的x和y的值都扩大到原来的2倍,得
故选D.
本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.
4、C
【解析】
由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.
5、C
【解析】
根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.
【详解】
①每一个外角都等于60°的多边形是六边形,正确;
②“反证法”就是从反面的角度思考问题的证明方法,故错误;
③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;
④分式值为零的条件是分子为零且分母不为零,故正确;
正确的有3个.
故选C.
此题考查命题与定理,解题关键在于掌握各性质定理.
6、C
【解析】
=0且x²+4x+4≠0,
解得x=2.
故选C.
7、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
解:这个三角形是直角三角形,理由如下:
因为边长之比满足1:2:,
设三边分别为x、2x、x,
∵(x)2+(2x)²=(x)²,
即满足两边的平方和等于第三边的平方,
∴它是直角三角形.
故选B.
本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8、C
【解析】
观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.
【详解】
根据图象,水面高度增加的先逐渐变快,再匀速增加;
故容器从下到上,应逐渐变小,最后均匀.
故选C.
此题考查函数的图象,解题关键在于结合实际运用函数的图像.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、队员1
【解析】
根据方差的意义结合平均数可作出判断.
【详解】
因为队员1和1的方差最小,队员1平均数最小,所以成绩好,
所以队员1成绩好又发挥稳定.
故答案为:队员1.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
10、.
【解析】
过点作于点,根据四边形是菱形可知,可得出是等腰三角形,即可得到,再根据勾股定理求出即可得出结论.
【详解】
过点作于点,
四边形是菱形,
,
是等腰三角形,
点是的中点,
,
,
四边形是正方形,
=6,
6+4=10,
.
故答案为:.
本题考查的是正方形的性质,根据题意作出辅助线,利用菱形的性质判断出是等腰三角形是解题的关键.
11、1
【解析】
由平行四边形的性质可得S△EHB=S△EIH,S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,由面积和差关系可求四边形IJKL的面积.
【详解】
解:∵AB∥IL,IJ∥BC,
∴四边形EIHB是平行四边形,
∴S△EHB=S△EIH,
同理可得:S△AEF=S△EFJ,S△DFG=S△FKG,S△GCH=S△GHL,
∴四边形IJKL面积=四边形EFGH面积−(四边形ABCD面积−四边形EFGH面积)=11−(18−11)=1,
故答案为:1.
本题考查了平行四边形的判定与性质,由平行四边形的性质得出S△EHB=S△EIH是解题的关键.
12、75°
【解析】
根据三角形内角和定理求出∠DMC,求出∠AMF,根据三角形外角性质得出∠1=∠A+∠AMF,代入求出即可.
【详解】
∵∠ACB=90°,
∴∠MCD=90°,
∵∠D=60°,
∴∠DMC=30°,
∴∠AMF=∠DMC=30°,
∵∠A=45°,
∴∠1=∠A+∠AMF=45°+30°=75°,
故选:C.
本题考查了三角形内角和定理,三角形的外角性质的应用,解此题的关键是求出∠AMF的度数.
13、m>1
【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围.
【详解】
解:去分母得,m-1=2x+2,
解得,x=,
∵方程的解是正数,
∴m-1>2,
解这个不等式得,m>1,
∵+1≠2,
∴m≠1,
则m的取值范围是m>1.
故答案为:m>1.
本题考查了分式方程的解,解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.注意分式方程分母不等于2.
三、解答题(本大题共5个小题,共48分)
14、(1)v关于t的函数表达式为v=,自变量的取值范围为t>0;(2)放水速度的范围为300≤x≤360立方米/小时.
【解析】
(1)由题意得vt=900,即v=,自变量的取值范围为t>0,
(2)把t=2.5,t=3代入求出相应的v的值,即可求出放水速度的范围.
【详解】
(1)由题意得:vt=900,
即:v=,
答:
(2)当t=2.5时,v==360,
当t=3时,v==300,
所以放水速度的范围为300≤v≤360立方米/小时,
答:所以放水速度的范围为300≤x≤360立方米/小时.
考查求反比例函数的关系式以及反比例函数图象上点的坐标特点,解题关键在于根据常用的数量关系得出函数关系式.
15、 (1) 800 ;(2)见解析.
【解析】
(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算即可得;
(2)分两种情况:①当0≤x≤20时,y=y1,②当20
(1)设求原有蓄水量y1(万m3)与时间x(天)的函数关系式y1=kx+b,
把(0,1200)和(60,0)代入到y1=kx+b得:
,
解得,
∴y1=﹣20x+1200,
当x=20时,y1=﹣20×20+1200=800;
(2)设y2=kx+b,
把(20,0)和(60,1000)代入到y2=kx+b中得:
,
解得,
∴y2=25x﹣500,
当0≤x≤20时,y=﹣20x+1200,
当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,
当y≤900时,5x+700≤900, x≤1,
当y1=900时,900=﹣20x+1200, x=15,
∴发生严重干旱时x的范围为:15≤x≤1.
本题考查了一次函数的应用,涉及待定系数法求一次函数的解析式、分段函数等,会观察函数图象、熟练掌握待定系数法是解本题的关键.
16、(1)见解析;(2)△ABC的面积=.
【解析】
(1)根据直角三角形的性质和角平分线的定义证出∠C=∠DBC,然后根据等角对等边即可证出DC=DB,然后利用三线合一即可得出结论;
(2)利用30°所对的直角边是斜边的一半即可求出BD和AB,从而求出AC,然后根据三角形的面积公式计算即可.
【详解】
(1)证明:∵∠A=90°,∠C=30°,
∴∠ABC=60°,
∵BD平分∠ABC,
∴∠DBC=∠ABC=30°,
∴∠C=∠DBC,
∴DC=DB,
∵DE⊥BC,
∴EC=BE.
(2)解:在Rt△ABD中,∵∠A=90°,AD=3,∠ABD=30°,
∴BD=2AD=6,AB==3,
∴DB=DC=6,
∴AC=9,
∴△ABC的面积=×=.
此题考查的是直角三角形的性质、等腰三角形的判定及性质和勾股定理,掌握30°所对的直角边是斜边的一半、等角对等边、三线合一和利用勾股定理解直角三角形是解决此题的关键.
17、(1); (2)长为时这个长方形的宽为
【解析】
按照原题解题方法,进而借助完全平方公式以及平方差公式分解因式得出即可.
【详解】
(1)
=
=
=
=
=
(2) ∵
=
=
∴长为时这个长方形的宽为.
18、(1)50;条形图见详解;(2)0.3
【解析】
(1)根据统计图中的数据可以求得本次调查的学生数,计算出选择C的学生数,从而可以将统计图补充完整;
(2)根据统计图中的数据可以分别求得抽取到的学生对这次“树的畅想”的景观设计课活动收获度是“收获一般”或者“没有太大的收获”的概率.
【详解】
解:(1)由题意可得,
本次调查的学生是:15÷30%=50(名),
故答案为:50,
选择C的学生有:50-15-20-5=10,补全的条形统计图如下图所示;
(2)由题可知:
“收获一般”或者“没有太大的收获”的概率为:;
本题考查概率公式、全面调查与抽样调查、扇形统计图、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AB=2BC.
【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
20、41或33.
【解析】
需要分两种情况进行讨论.由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则BE=AB;同理可得,CF=CD=1.而AB+CD=BE+CF=BC+FE=13+6=19,或 AB+CD=BE+CF=BC-FE=13-6=7由此可以求周长.
【详解】
解:分两种情况,(1)如图,当AE、DF相交时:
∵AE平分∠BAD,
∴∠1=∠2
∵平行四边形ABCD中,AD∥BC,BC=AD=13,EF=6
∴∠1=∠3
∴∠2=∠3
∴AB=BE
同理CD=CF
∴AB+CD=BE+CF=BC+FE=13+6=19
∴平行四边形ABCD的周长= AB+CD+ BC+AD=19+13×2=41;
(二)当AE、DF不相交时:
由角平分线和平行线,同(1)方法可得AB=BE,CD=CF
∴AB+CD=BE+CF=BC-FE=13-6=7
∴平行四边形ABCD的周长= AB+CD+ BC+AD=7+13×2=33;
故答案为:41或33.
本题考查角平分线的定义、平行四边形的性质、平行线的性质等知识,解题关键“角平分线+一组平行线=等腰三角形”.
21、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
22、6+4
【解析】
连结PP′,如图,由等边三角形的性质得到∠BAC=60°,AB=AC,由旋转的性质得到CP=CP′=4,∠PCP′=60°,得到△PCP′为等边三角形,求得PP′=PC=4,根据全等三角形的性质得到AP′=PB=5,根据勾股定理的逆定理得到△APP′为直角三角形,∠APP′=90°,根据三角形的面积公式即可得到结论.
【详解】
连结PP′,如图,
∵△ABC为等边三角形,
∴∠BAC=60°,AB=AC,
∵线段CP绕点C顺时针旋转60°得到线段CP',
∴CP=CP′=4,∠PCP′=60°,
∴△PCP′为等边三角形,
∴PP′=PC=4,
∵∠ACP+∠BCP=60°,∠ACP+∠ACP′=60°,
∴∠BCP=∠ACP′,且AC=BC,CP=CP′
∴△BCP≌△ACP′(SAS),
∴AP′=PB=5,
在△APP′中,∵PP′2=42=16,AP2=32=9,AP′2=52=25,
∴PP′2+AP2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴S四边形APCP′=S△APP′+S△PCP′= AP×PP′+ ×PP′2=6+4 ,
故答案为:6+4.
此题考查旋转的性质,全等三角形的性质,勾股定理以及逆定理,证明△APQ为等边三角形是解题的关键.
23、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析 (1)1+
【解析】
试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.
(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.
∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.
在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,
∴△ADC≌△BDF(ASA).∴BF=AC.
∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.
(1)∵△ADC≌△BDF,∴DF=CD=.
在Rt△CDF中,.
∵BE⊥AC,AE=EC,∴AF=CF=1.
∴AD=AF+DF=1+.
25、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
【解析】
(1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
(2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
【详解】
解:(1)由题意知:男生鞋号数据的平均数==24.11;
男生鞋号数据的众数为21;
男生鞋号数据的中位数==24.1.
∴平均数是24.11,中位数是24.1,众数是21.
(2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
∴厂家最关心的是众数.
本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
26、 (1)y1=4x+600;y2=8x;(2)没有底薪,每售出一件服装可得提成8元;(3)当售出的衣服少于150件时,选择第一种支付月薪方式;当售出的衣服为150件时,两种支付月薪方式一样;当售出的衣服多于150件时,选择第二种支付月薪方式.
【解析】
(1)根据题意可以直接写出y1与y2的函数关系式;
(2)根据题意和函数图象可以得到该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的;
(3)根据(1)中的函数解析式可以解答本题.
【详解】
解:(1)由题意可得,
y1与x的函数解析式为:y1=4x+600,
y2与x的函数解析式为:y2=x=8x,
即y1与x的函数解析式为y1=4x+600,y2与x的函数解析式为:y2=8x;
(2)由题意可得,
该服装店新推出的第二种付薪方式是,没有底薪,每售出一件服装可得提成8元;
(3)当售出的衣服少于150件时,选择第一次支付月薪方式,
当售出的衣服为150件时,两种支付月薪方式一样,
当售出的衣服多于150件时,选择第二种支付月薪方式,
理由:令4x+600=8x,
解得,x=150,
∴当售出的衣服少于150件时,选择第一种支付月薪方式,
当售出的衣服为150件时,两种支付月薪方式一样,
当售出的衣服多于150件时,选择第二种支付月薪方式.
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
批阅人
队员1
队员2
队员3
队员4
平均数(秒)
51
50
51
50
方差(秒)
3.5
3.5
14.5
15.5
鞋号
23.5
24
24.5
25
25.5
26
人数
3
4
4
7
1
1
2024年江苏省江都区曹王中学数学九上开学考试模拟试题【含答案】: 这是一份2024年江苏省江都区曹王中学数学九上开学考试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省东莞中学数学九上开学联考模拟试题【含答案】: 这是一份2024年广东省东莞中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年江苏省泰兴市实验九上数学开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。