2024年江苏省泰州白马中学九年级数学第一学期开学达标测试试题【含答案】
展开
这是一份2024年江苏省泰州白马中学九年级数学第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列关于一次函数的说法,错误的是( )
A.图象经过第一、二、四象限
B.随的增大而减小
C.图象与轴交于点
D.当时,
2、(4分)小明3分钟共投篮80次,进了50个球,则小明进球的频率是( ).
A.80 B.50 C.1.6 D.0.625
3、(4分)如图,在矩形ABCD中,对角线AC与BD相交于点O,,,则BD的长是
A.2B.5C.6D.4
4、(4分)若菱形的周长为8,高为1,则菱形两邻角的度数比为( )
A.3∶1B.4∶1C.5∶1D.6∶1
5、(4分)如图,在□ABCD中,已知AD=8cm,AB=5cm,AE平分∠BAD交BC边于点E,则EC等于( )
A.1cmB.2cmC.3cmD.4cm
6、(4分)如图,把一个含45°角的直角三角尺BEF和个正方形ABCD摆放在起,使三角尺的直角顶点和正方形的顶点B重合,连接DF,DE,M,N分别为DF,EF的中点,连接MA,MN,下列结论错误的是( )
A.∠ADF=∠CDEB.△DEF为等边三角形
C.AM=MND.AM⊥MN
7、(4分)寓言故事《乌鸦喝水》教导我们遇到困难要运用智慧、认真思考才能让问题迎刃而解.如图,一个紧口瓶中盛有一些水,可乌鸦的嘴够不到瓶中的水.于是乌鸦衔来一些小石子放入瓶中,瓶中的水面高度得到提升.由于放入的石子较多,水都快溢出来了,乌鸦成功喝到了水,如果衔入瓶中石子的体积为,水面高度为,下面图象能大致表示该故事情节的是( )
A.B.C.D.
8、(4分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x台机器,则可列方程为( )
A.=B.=C.=D.=
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
10、(4分)若次函数y=(a﹣1)x+a﹣8的图象经过第一,三,四象限,且关于y的分式方程 有整数解,则满足条件的整数a的值之和为_____.
11、(4分)如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=(________).
12、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
13、(4分)利用因式分解计算:2012-1992=_________;
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在□ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AD、BC于E、F,
(1)根据题意补全图形;
(2)求证:DE=BF.
15、(8分)已知,如图,,求证:.
证明:∵
∴________________( )
∴________________( )
又∵
∴________________( )
∴( )
16、(8分)计算:
(1);
(2)先化简,再求值,;其中,x2,y2.
17、(10分)八年级(1)班张山同学利用所学函数知识,对函数进行了如下研究:
列表如下:
描点并连线(如下图)
(1)自变量x的取值范围是________;
(2)表格中:________,________;
(3)在给出的坐标系中画出函数的图象;
(4)一次函数的图象与函数的图象交点的坐标为_______.
18、(10分)(1) ;
(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是_____.
20、(4分)各内角所对边的长分别为、、,那么角的度数是________。
21、(4分)一个多边形的各内角都等于,则这个多边形的边数为______.
22、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.
23、(4分)若以二元一次方程的解为坐标的点(x,y) 都在直线上,则常数b=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民户一表生活用水阶梯式计费价格表的部分信息:
说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费.
(1)设小王家一个月的用水量为吨,所应交的水费为元,请写出与的函数关系式;
(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把7月份的水费控制在不超过家庭月收入的.若小王家的月收入为元,则小王家7月份最多能用多少吨水?
25、(10分)如图,中,、两点在对角线上,且.
求证:.
26、(12分)如图,在Rt△ABC中,∠C=90°,AC=5,AB=13,求BC.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由,可知图象经过第一、二、四象限;由,可得随的增大而减小;图象与轴的交点为;当时,;
【详解】
∵,
∴图象经过第一、二、四象限,
A正确;
∵,
∴随的增大而减小,
B正确;
令时,,
∴图象与轴的交点为,
∴C正确;
令时,,
当时,;
D不正确;
故选:D.
本题考查一次函数的图象及性质;熟练掌握一次函数解析式中,与对函数图象的影响是解题的关键.
2、D
【解析】
试题分析:频率等于频数除以数据总和,∵小明共投篮81次,进了51个球,∴小明进球的频率=51÷81=1.625,故选D.
考点:频数与频率.
3、D
【解析】
根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=2,然后由BD=2OB求解即可.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,∠BAD=90°,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OB=AB=2,
∴BD=2BO=4,
故选D.
本题考查了矩形的性质、等边三角形的判定与性质,熟练掌握矩形的性质是解题的关键.
4、C
【解析】
先根据菱形的性质求出边长AB=2,再根据直角三角形的性质求出∠B=30°,得出∠DAB=150°,即可得出结论.
【详解】
解:如图所示:
∵四边形ABCD是菱形,菱形的周长为8,
∴AB=BC=CD=DA=2,∠DAB+∠B=180°,
∵AE=1,AE⊥BC,
∴AE=AB,
∴∠B=30°,
∴∠DAB=150°,
∴∠DAB:∠B=5:1;
故选:C.
本题考查了菱形的性质、含30°角的直角三角形的判定;熟练掌握菱形的性质和含30°角的直角三角形的判定是解决问题的关键.
5、C
【解析】
根据在□ABCD中,AE平分∠BAD,得到∠BAE=∠AEB,即AB=BE,即可求出EC的长度.
【详解】
∵在□ABCD中,AE平分∠BAD,
∴∠DAE=∠BAE,∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵AD=8cm,AB=5cm,
∴BE=5cm,BC=8cm,
∴CE=8-5=3cm,
故选C.
本题是对平行四边形知识的考查,熟练掌握平行四边形性质及角平分线知识是解决本题的关键.
6、B
【解析】
连接DE,先根据直角三角形的性质得出AM=DF,再根据△BEF是等腰直角三角形得出AF=CE,由SAS定理得出△ADF≌△CDE,可得∠ADF=∠CDE ,DE=DF,再根据点M,N分别为DF,EF的中点,得出MN是△EFD的中位线,故MN=DE,MN∥DE,可得AM=MN,由MN∥DE,可得∠FMN=∠FDE,根据三角形外角性质可得∠AMF=2∠ADM,由∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,可得MA⊥MN,只能得到△DEF是等腰三角形,无法得出是等边三角形,据此即可得出结论.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠BAD=∠C=90°,
∵点M是DF的中点,
∴AM=DF,
∵△BEF是等腰直角三角形,
∴BF=BE,
∴AF=CE,
∴△ADF≌△CDE(SAS),
∴∠ADF=∠CDE ,DE=DF,
∵点M,N分别为DF,EF的中点,
∴MN是△EFD的中位线,
∴MN=DE,
∴AM=MN;
∵MN是△EFD的中位线,
∴MN∥DE,
∴∠FMN=∠FDE,
∵AM=MD,
∴∠MAD=∠ADM,
∵∠AMF是△ADM外角,
∴∠AMF=2∠ADM.
又∵∠ADM=∠DEC,
∴∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,
∴MA⊥MN,
∵DE=DF,
∴△DEF是等腰三角形,无法得出是等边三角形,
综上,A、C、D正确,B错误,
故选B.
本题考查了正方形的性质,全等三角形的判定与性质,三角形外角的性质,直角三角形斜边中线性质等,综合性较强,熟练掌握和灵活应用相关知识是解题的关键.
7、D
【解析】
根据题意可以分析出各段过程中h与t的函数关系,从而可以解答本题.
【详解】
解:由题意可得,
刚开始瓶子内盛有一些水,则水面的高度大于0,故选项A,B错误,
然后乌鸦衔来一些小石子放入瓶中,瓶中的水面高度随着t的增加缓慢增加,当水面与瓶子竖直部分持平时,再继续上升的过程中,h与t成一次函数图象,故选项C错误,选项D正确,
故选:D.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
8、C
【解析】
根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【详解】
解:设原计划每天生产x台机器,则现在可生产(x+50)台.
依题意得:=.
故选:C.
此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
函数y=ax+b和y=kx的图象交于点P(-4,-2),
即x=-4,y=-2同时满足两个一次函数的解析式.
所以关于x,y的方程组的解是.
故答案为:.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
10、1
【解析】
根据题意得到关于的不等式组,解之得到的取值范围,解分式方程根据“该方程有整数解,且”,得到的取值范围,结合为整数,取所有符合题意的整数,即可得到答案.
【详解】
解:函数的图象经过第一,三,四象限,
解得:,
方程两边同时乘以得:,
去括号得:,
移项得:,
合并同类项得:,
系数化为1得:,
该方程有整数解,且,
是2的整数倍,且,
即是2的整数倍,且,
,
整数为:2,6,
,
故答案为1.
本题考查了分式方程的解和一元一次不等式组的整数解,正确掌握解分式方程的方法和解一元一次不等式组的方法是解题的关键.
11、
【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
【详解】
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:,
又,
∴.
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
12、60
【解析】
试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
考点:线段垂直平分线的性质
13、800
【解析】
分析:先利用平方差公式分解因式,然后计算即可求解.
详解:2012-1992=(201+199)(201-199)=800.
故答案为800.
点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析
【解析】
(1)根据题意画图即可补全图形;
(2)由平行四边形的性质可得,,再根据平行线的性质可得,进而可根据ASA证明,进一步即可根据全等三角形的性质得出结论.
【详解】
解:(1)补全图形如图所示:
(2)证明:∵四边形为平行四边形,
∴,,
∴,
又∵,
∴(ASA),
∴.
本题考查了按题意画图、平行四边形的性质和全等三角形的判定和性质等知识,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定和性质是解题的关键.
15、DE∥AC;内错角相等,两直线平行;;两直线平行,内错角相等 ;;两直线平行,同位角相等.
【解析】
根据平行线的性质和判定,还有等量代换可得.
【详解】
证明:∵
∴___DE∥AC_____( 内错角相等,两直线平行 )
∴________________( 两直线平行,内错角相等 )
又∵
∴________________( 两直线平行,同位角相等)
∴(等量代换)
考核知识点:平行线的判定和性质.理解好判定和性质是关键.
16、(1);(2)2.
【解析】
(1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;
(2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.
【详解】
(1)
=
=
=
(2)
=
=
=
将x2,y2代入得到=2.
本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.
17、(1)全体实数;(2)1,1;(3)见解析;(4)和.
【解析】
(1)根据函数解析式,可得答案;
(2)根据自变量与函数值得对应关系,可得答案;
(3)根据描点法画函数图象,可得答案;
(4)根据图象,可得答案.
【详解】
解:(1)∵函数y=|x+2|-x-1
∴自变量x的取值范围为全体实数
故答案为:全体实数;
(2)当x=-2时,m=|-2+2|+2-1=1,
当x=0时,n=|0+2|-0-1=1,
∴
故答案为:1,1;
(3)如下图
(4)在(3)中坐标系中作出直线y=-x+3,如下:
由图象得:一次函数y=-x+3的图象与函数y=|x+2|-x-1的图象交点的坐标为:(-6,9)和(2,1)
故答案为:(-6,9)和(2,1).
本题考查了函数的图象与性质,利用描点法画函数图象,利用图象得出两个函数的交点是解题关键.
18、(1);(2).
【解析】
(1)先利用平方差公式化简后面两个括号,再根据二次根式的运算法则进行计算即可得出答案;
(2)先利用平方差公式和完全平方公式进行展开,再根据二次根式的运算法则进行计算即可得出答案.
【详解】
解:(1)原式=
(2)原式=
本题考查的是二次根式的运算,难度适中,需要熟练掌握二次根式的运算法则.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、两组对边分别相等的四边形是平行四边形.
【解析】
根据平行四边形的判定可得:两组对边分别相等的四边形是平行四边形.
故答案是:两组对边分别相等的四边形是平行四边形.
20、
【解析】
根据勾股定理的逆定理判断即可.
【详解】
∵△ABC各内角A、B、C所对边的长分别为13、12、5,
∴52+122=132,
∴∠A=90°,
故答案为:90°
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
21、6
【解析】
由题意,这个多边形的各内角都等于,则其每个外角都是,再由多边形外角和是求出即可.
【详解】
解:∵这个多边形的各内角都等于,∴其每个外角都是,∴多边形的边数为,故答案为6.
本题考查了多边形的外角和,准确掌握多边形的有关概念及多边形外角和是是解题的关键.
22、1
【解析】
分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.
详解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=1°,
故答案为1.
点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
23、1.
【解析】
直线解析式乘以1后和方程联立解答即可.
【详解】
因为以二元一次方程x+1y-b=0的解为坐标的点(x,y)都在直线上,
直线解析式乘以1得1y=-x+1b-1,变形为:x+1y-1b+1=0
所以-b=-1b+1,
解得:b=1,
故答案为1.
此题考查一次函数与二元一次方程问题,关键是直线解析式乘以1后和方程联立解答.
二、解答题(本大题共3个小题,共30分)
24、(1)y= ;(2)40吨.
【解析】
(1)由水费=自来水费+污水处理,分段得出y与x的函数关系式;
(2)先判断用水量超过30吨,继而再由水费不超过184,可得出不等式,解出即可.
【详解】
解:(1)设小王家一个月的用水量为x吨,所应交的水费为y元,则
①当用水量17吨及以下时,y=(2.2+0.8)x=3x;
②当17<x≤30时,y=17×2.2+4.2(x−17)+0.8x=5x−34;
③当x>30时,y=17×2.2+13×4.2+6(x−30)+0.8x=6.8x−1.
∴y= ;
(2)当用水量为30吨时,水费为:6.8×30−1=116元,9200×2%=184元,
∵116<184,
∴小王家七月份的用水量超过30吨,
设小王家7月份用水量为x吨,
由题意得:6.8x−1≤184,
解得:x≤40,
∴小王家七月份最多用水40吨.
本题考查了一次函数的应用及一元一次不等式的应用,解答本题的关键是仔细审题,将实际问题转化为数学模型求解.
25、见解析
【解析】
证明△ADF≌△CBE,根据全等三角形的对应角相等即可证得∠AFD=∠CEB,进而得出∠AFE=∠CEF,即可得出结论.
【详解】
证明:∵四边形ABCD是平行四边形,
∴AD∥CB,AD=CB.
∴∠ADF=∠CBE.
在△ABE和△CDF中
∴△ADF≌△CBE(SAS),
∴∠AFD=∠CEB,
∵∠AFE=180°-∠AFD,∠CEF=180°-∠CEB,
∴∠AFE=∠CEF,
∴.
本题考查了平行四边形的性质,全等三角形和平行线的判定,理解同位角相等两直线平行是解题关键.
26、12
【解析】
在Rt△ABC中,∠C=90°,AC=5,AB=13,根据勾股定理,即可求出BC.
【详解】
解:∵在Rt△ABC中,∠C=90°,
∴
∴
∴
又∵AC=5,AB=13,
∴
=
=12
此题主要考查勾股定理的运用.
题号
一
二
三
四
五
总分
得分
x
…
0
1
2
3
…
y
…
7
5
3
m
1
n
1
1
1
…
自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
吨及以下
超过 17 吨但不超过 30 吨的部分
超过 30 吨的部分
相关试卷
这是一份2024年江苏省南菁高级中学九年级数学第一学期开学达标测试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省泰州白马中学数学九年级第一学期开学联考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省泰州白马中学数学八上期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在一次函数y=,已知,已知是方程的解,则的值是等内容,欢迎下载使用。