搜索
    上传资料 赚现金
    英语朗读宝

    2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】

    2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】第1页
    2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】第2页
    2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】

    展开

    这是一份2024年江苏省徐州市睢宁县九年级数学第一学期开学调研试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)龙华区某校改造过程中,需要整修校门口一段全长2400m的道路,为了保证开学前师生进出不受影响,实际工作效率比原计划提高了,结果提前8天完成任务,若设原计划每天整个道路x米,根据题意可得方程( )
    A.B.
    C.D.
    2、(4分)正方形在平面直角坐标系中,其中三个顶点的坐标分别为,,,则第四个顶点的坐标为( )
    A.B.C.D.
    3、(4分)如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
    A.2个B.3个C.4个D.5个
    4、(4分)函数 y=ax﹣a 的大致图象是( )
    A.B.C.D.
    5、(4分)如图,菱形的对角线、相交于点,,,过点作于点,连接,则的长为( )
    A.B.2C.3D.6
    6、(4分)如图,在中,,是边上一条运动的线段(点不与点重合,点不与
    点重合),且,交于点,交于点,在从左至右的运动过
    程中,设BM=x,和的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致
    是( )
    A.B.C.D.
    7、(4分)如图,在梯形ABCD中,,,,交BC于点若,,则CD的长是
    A.7B.10C.13D.14
    8、(4分)已知正比例函数,且随的增大而减小,则的取值范围是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
    10、(4分)如图,在平行四边形ABCD中,AC和BD交于点O,过点O的直线分别与AB,DC交于点E,F,若△AOD的面积为3,则四边形BCFE的面积等于_____.
    11、(4分)直线y=2x-1沿y轴平移3个单位长度,平移后直线与x轴的交点坐标为 .
    12、(4分)如图,已知菱形OABC的顶点O(0,0),B(2,2),则菱形的对角线交点D的坐标为(1,1),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,点D的坐标为________.
    13、(4分)正五边形的内角和等于______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)通过类比联想,引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,先阅读再解决后面的问题:
    原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,,连接EF,求证:EF=BE+DF.

    解题分析:由于AB=AD,我们可以延长CD到点G,使DG=BE,易得,可证.再证明,得EF=FG=DG+FD=BE+DF.
    问题(1):如图2,在四边形ABCD中,AB=AD,,E,F分别是边BC,CD上的点,且,求证:EF=BE+FD;

    问题(2):如图3,在四边形ABCD中,,,AB=AD=1,点E,F分别在四边形ABCD的边BC,CD上的点,且,求此时的周长
    15、(8分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.
    (1)求平行四边形ABCD的面积;
    (2)求证:∠EMC=2∠AEM .
    16、(8分)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:
    (1)本次随机抽样的学生数是多少?A中值是多少?
    (2)本次调查获取的样本数据的众数和中位数各是多少?
    (3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?
    17、(10分)解方程:3(x﹣7)=4x(x﹣7)
    18、(10分)已知中,其中两边的长分别是3,5,求第三边的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,点是矩形的对角线上一点,过点作,分别交、于、,连接、.若,.则图中阴影部分的面积为____________.
    20、(4分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为_____.
    21、(4分)如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
    22、(4分)已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为_____cm.
    23、(4分)若代数式有意义,则的取值范围为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,正比例函数的图象与反比例函数的图象交于,两点,其中点的横坐标为.
    (1)求的值.
    (2)若点是轴上一点,且,求点的坐标.
    25、(10分)如图,在中,分别是边上的点,连接,且.
    求证:;
    如果是的中点, ,求的长,
    26、(12分)在平面直角坐标系中,过一点分别作x轴,y轴的垂线,如果由这点、原点及两个垂足为顶点的矩形的周长与面积相等,那么称这个点是平面直角坐标系中的“巧点”.例如,图1中过点P(4,4)分別作x轴,y轴的垂线,垂足为A,B,矩形OAPB的周长为16,面积也为16,周长与面积相等,所以点P是巧点.请根据以上材料回答下列问题:
    (1)已知点C(1,3),D(-4,-4),E(5,-),其中是平面直角坐标系中的巧点的是______;
    (2)已知巧点M(m,10)(m>0)在双曲线y=(k为常数)上,求m,k的值;
    (3)已知点N为巧点,且在直线y=x+3上,求所有满足条件的N点坐标.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    直接利用施工时间提前8天完成任务进而得出等式求出答案.
    【详解】
    解:设原计划每天整修道路x米,根据题意可得方程:

    故选:A.
    本题考查由实际问题抽象出分式方程,正确找出等量关系是解题关键.
    2、B
    【解析】
    根据已知三个点的横纵坐标特征,可设A(-2,2),B(-2,-2),C(x,y),D(2,2),判断出AB⊥x轴,AD⊥AB,由此可得C点坐标与D点、B点坐标的关系,从而得到C点坐标.
    【详解】
    解:设A(-2,2),B(-2,-2),C(x,y),D(2,2),
    由于A点和B点的横坐标相同,
    ∴AB垂直x轴,且AB=1.
    因为A点和D点纵坐标相同,
    ∴AD∥x轴,且AD=1.
    ∴AD⊥AB,CD⊥AD.
    ∴C点的横坐标与D点的横坐标相同为2.
    C点纵坐标与B点纵坐标相同为-2,
    所以C点坐标为(2,-2).
    故选:B.
    本题主要考查了正方形的性质、坐标与图形的性质,解决这类问题要熟知两个点的横坐标相同,则两点连线垂直于x轴,纵坐标相同,则平行于x轴(垂直于y轴).
    3、D
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出结论.
    【详解】
    ①正确.理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
    ②正确.理由:
    ∵∠BAG=∠FAG,∠DAE=∠FAE.
    又∵∠BAD=90°,∴∠EAG=45°;
    ③正确.理由:
    设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
    ④正确.理由:
    ∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
    ⑤正确.理由:
    ∵S△ECG=GC•CE=×6×8=1.
    ∵S△FCG===.
    故选D.
    本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
    4、C
    【解析】
    将y=ax-a化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.
    【详解】
    解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B、 D中的图象都不过点(1,0), 所以C项图象正确.
    故本题正确答案为C.
    本题主要考查一次函数的图象和一次函数的性质.
    5、C
    【解析】
    先证明△ABC为等边三角形,再证明OE是△ABC的中位线,利用三角形中位线即可求解.
    【详解】
    解:∵ABCD是菱形,
    ∴AB=BC,OA=OC,
    ∵∠ABC=60°,
    ∴△ABC为等边三角形,
    ∵,
    ∴E是BC中点,
    ∴OE是△ABC的中位线,
    ∴OE=AB,
    ∵,
    ∴OE=3;
    故选:C.
    本题考查了菱形的性质以及等边三角形判定和性质,证明△ABC为等边三角形是解答本题的关键.
    6、B
    【解析】
    【分析】不妨设BC=2a,∠B=∠C=α,BM=x,则CN=a-x,根据二次函数即可解决问题.
    【详解】不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a−x,
    则有S阴=y=⋅x⋅xtanα+ (a−x)⋅(a−x)tanα
    =tanα(m2+a2−2ax+x2)
    =tanα(2x2−2ax+a2)
    ∴S阴的值先变小后变大,
    故选:B
    【点睛】本题考核知识点:等腰三角形的性质.解题关键点:根据面积公式列出二次函数.
    7、A
    【解析】
    根据平行线的性质,得,根据三角形的内角和定理,得,再根据等角对等边,得根据两组对边分别平行,知四边形ABED是平行四边形,则,从而求解.
    【详解】
    ,,

    又,


    ,,
    四边形ABED是平行四边形.


    故选:A.
    此题综合运用了平行四边形的判定及性质、平行线的性质、等角对等边的性质.
    8、D
    【解析】
    根据正比例函数的性质,时,随的增大而减小,即,即可得解.
    【详解】
    根据题意,得

    故答案为D.
    此题主要考查正比例函数的性质,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    解过点A作AM⊥GH于M,由正方形纸片折叠的性质得出∠EGH=∠EAB=∠ADC=90°,AE=EG,则EG⊥GH,∠EAG=∠EGA,由垂直于同一条直线的两直线平行得出AM∥EG,得出∠EGA=∠GAM,则∠EAG=∠GAM,得出AG平分∠DAM,则DG=GM,由AAS证得△ADG≌△AMG得出AD=AM=AB,由HL证得Rt△ABP≌Rt△AMP得出BP=MP,则△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=1.
    【详解】
    解:过点A作AM⊥GH于M,如图所示:
    ∵将正方形纸片折叠,使点A落在CD边上的G处,
    ∴∠EGH=∠EAB=∠ADC=90°,AE=EG,
    ∴EG⊥GH,∠EAG=∠EGA,
    ∴AM∥EG,
    ∴∠EGA=∠GAM,
    ∴∠EAG=∠GAM,
    ∴AG平分∠DAM,
    ∴DG=GM,
    在△ADG和△AMG中,
    ∴△ADG≌△AMG(AAS),
    ∴AD=AM=AB,
    在Rt△ABP和Rt△AMP中,
    ∴Rt△ABP≌Rt△AMP(HL),
    ∴BP=MP,
    ∴△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=8+8=1,
    故答案为:1.
    本题考查了折叠的性质、正方形的性质、角平分线的判定与性质、全等三角形的判定与性质等知识,熟练掌握折叠的性质,通过作辅助线构造全等三角形是解题的关键.
    10、6
    【解析】
    根据平行四边形的性质得到OD=OB,得到△AOB的面积=△AOD的面积,求出平行四边形ABCD的面积,根据中心对称图形的性质计算.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴OD=OB,
    ∴△AOB的面积=△AOD的面积=3,
    ∴△ABD的面积为6,
    ∴平行四边形ABCD的面积为12,
    ∵平行四边形是中心对称图形,
    ∴四边形BCFE的面积=×平行四边形ABCD的面积=×12=6,
    故答案为:6.
    本题主要考查了全等三角形的判定,平行四边形的性质,掌握全等三角形的判定,平行四边形的性质是解题的关键.
    11、(-1,0),(2,0)
    【解析】
    (1)若将直线沿轴向上平移3个单位,则平移后所得直线的解析式为:,
    在中,由可得:,解得:,
    ∴平移后的直线与轴的交点坐标为:;
    (2)若将直线沿轴向下平移3个单位,则平移后所得直线的解析式为:,
    在中,由可得:,解得:,
    ∴平移后的直线与轴的交点坐标为:;
    综上所述,平移后的直线与轴的交点坐标为:或.
    12、 (-1,-1)
    【解析】
    根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.
    【详解】
    菱形OABC的顶点O(0,0),B(2,2),得
    D点坐标为(1,1).
    每秒旋转45°,则第60秒时,得
    45°×60=2700°,
    2700°÷360=7.5周,
    OD旋转了7周半,菱形的对角线交点D的坐标为(-1,-1),
    故答案为:(-1,-1).
    本题考查了旋转的性质,利用旋转的性质是解题关键.
    13、540
    【解析】
    过正五边形五个顶点,可以画三条对角线,把五边形分成3个三角形
    ∴正五边形的内角和=3180=540°
    三、解答题(本大题共5个小题,共48分)
    14、(1),见解析;(2)周长为.
    【解析】
    (1)在CD的延长线上截取DG=BE,连接AG,证出△ABE≌△ADG,根据全等三角形的性质得出BE=DG,再证明△AEF≌△AGF,得EF=FG,即可得出答案;
    (2)连接AC,证明△ABC≌△ADC(SSS).得∠DAC=∠BAC,同理由(1)得EF=BE+DF,可计算△CEF的周长.
    【详解】
    证明:(1)在CD的延长线上截取DG=BE,连接AG,如图2,
    ∵∠ADF=90°,∠ADF+∠ADG=180°,
    ∴∠ADG=90°,
    ∵∠B=90°,
    ∴∠B=∠ADG=90°,
    ∵BE=DG,AB=AD,
    ∴△ABE≌△ADG(SAS),
    ∴∠BAE=∠DAG,AG=AE,
    ∴∠EAG=∠EAD+∠DAG=∠EAD+∠ABE=∠BAD,
    ∵∠EAF=∠BAD,
    ∵∠EAG=∠EAG=(∠EAF+∠FAG),
    ∴∠EAF=∠FAG,
    又∵AF=AF,AE=AG,
    ∴△AEF≌△AFG(SAS),
    ∴EF=FG=DF+DG=EB+DF;
    (2)解:连接AC,如图3,
    ∵AB=AD,BC=CD,AC=AC,
    ∴△ABC≌△ADC(SSS).
    ∴∠DAC=∠BAC,
    ∴∠BAC=∠BAD=60°,
    ∵∠B=90°,AB=1,
    ∴在Rt△ABC中,AC=2,BC===,
    由(1)得EF=BE+DF,
    ∴△CEF的周长=CE+CF+EF=2BC=2.
    本题是四边形的综合题,考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,难度适中.
    15、(1) ;(2)证明见解析.
    【解析】
    (1)由AM=2AE=4,利用平行四边形的性质可求出BC=AD=1,利用直角三角形的性质得出BE、CE的长,进而得出答案;
    (2) 延长EM,CD交于点N,连接CM.通过证明△AEM≌△DNM,可得EM=MN,然后由直角三角形斜边的中线等于斜边的一半可证MN=MC,然后根据三角形外角的性质证明即可.
    【详解】
    (1)解:∵M为AD的中点,AM=2AE=4,
    ∴AD=2AM=1.在▱ABCD的面积中,BC=CD=1,
    又∵CE⊥AB,
    ∴∠BEC=90°,
    ∵∠BCE=30°,
    ∴BE=BC=4,
    ∴AB=6,CE=4,
    ∴▱ABCD的面积为:AB×CE=6×4=24;
    (2)证明:延长EM,CD交于点N,连接CM.
    ∵在▱ABCD中,AB∥CD,
    ∴∠AEM=∠N,
    在△AEM和△DNM中
    ∵∠AEM=∠N,
    AM=DM,
    ∠AME=∠DMN,
    ∴△AEM≌△DNM(AAS),
    ∴EM=MN,
    又∵AB∥CD,CE⊥AB,
    ∴CE⊥CD,
    ∴CM是Rt△ECN斜边的中线,
    ∴MN=MC,
    ∴∠N=∠MCN,
    ∴∠EMC=2∠N=2∠AEM.
    此题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形外角的性质、直角三角形的性质等知识.熟练应用平行四边形的性质是解(1)关键,正确作出辅助线是解(2)的关键.
    16、(1)40;15(2)众数为35,中位数为36;(3)60双
    【解析】
    (1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;
    (2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;
    (3)根据题意列出算式,计算即可得到结果.
    【详解】
    (1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图A中m的值为100−30−25−20−10=15;
    故本次随机抽样的学生数是40名,A中值是15;
    (2)∵在这组样本数据中,35出现了12次,出现次数最多,
    ∴这组样本数据的众数为35;
    ∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,
    ∴中位数为=36;
    答:本次调查获取的样本数据的众数为35,中位数为36;
    (3)∵在40名学生中,鞋号为35的学生人数比例为30%,
    ∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,
    则计划购买200双运动鞋,有200×30%=60双为35号.
    答:建议购买35号运动鞋60双.
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
    17、x1=,x2=1.
    【解析】
    整体移项后,利用分解因式法进行求解即可.
    【详解】
    移项,得3(x-1)-4x(x-1)=0,
    因式分解,得 (3-4x) (x-1)=0,
    由此得3-4x=0或x-1=0,
    解得x1=,x2=1.
    本题考查了解一元二次方程——因式分解法,根据一元二次方程的特点灵活选用恰当的方法进行求解是关键.
    18、4或
    【解析】
    分5是斜边长、5是直角边长两种情况,根据勾股定理计算即可.
    【详解】
    解:当5是斜边长时,第三边长,
    当5是直角边长时,第三边长,
    则第三边长为4或.
    本题考查的是勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由矩形的性质可证明S△DFP=S△PBE,即可求解.
    【详解】
    解:作PM⊥AD于M,交BC于N.
    则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,
    ∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
    ∴S△DFP=S△PBE=×2×5=5,
    ∴S阴=5+5=10,
    故答案为:10.
    本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△DFP=S△PBE.
    20、9或1
    【解析】
    【分析】△ABC中,∠ACB分锐角和钝角两种:
    ①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;
    ②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.
    【详解】有两种情况:
    ①如图1,∵AD是△ABC的高,
    ∴∠ADB=∠ADC=90°,
    由勾股定理得:BD==5,
    CD==4,
    ∴BC=BD+CD=5+4=9;
    ②如图2,同理得:CD=4,BD=5,
    ∴BC=BD﹣CD=5﹣4=1,
    综上所述,BC的长为9或1;
    故答案为:9或1.
    【点睛】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.
    21、1
    【解析】
    根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度
    【详解】
    ∵四边形ABCD是矩形,
    ∴△AOB是等边三角形,
    故答案为1.
    本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.
    22、1
    【解析】
    试题解析:连接EF,
    ∵OD=OC,
    ∵OE⊥OF
    ∴∠EOD+∠FOD=90°
    ∵正方形ABCD
    ∴∠COF+∠DOF=90°
    ∴∠EOD=∠FOC
    而∠ODE=∠OCF=41°
    ∴△OFC≌△OED,
    ∴OE=OF,CF=DE=3cm,则AE=DF=4,
    根据勾股定理得到EF==1cm.
    故答案为1.
    23、且.
    【解析】
    根据二次根式和分式有意义的条件进行解答即可.
    【详解】
    解:∵代数式有意义,
    ∴x≥0,x-1≠0,
    解得x≥0且x≠1.
    故答案为x≥0且x≠1.
    本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.
    二、解答题(本大题共3个小题,共30分)
    24、(1)k=2;(2)P点的坐标为或.
    【解析】
    (1)把代入正比例函数的图象求得纵坐标,然后把的坐标代入反比例函数,即可求出的值;
    (2)因为、关于点对称,所以,即可求得,然后根据三角形面积公式列出关于的方程,解方程即可求得.
    【详解】
    解:(1)正比例函数的图象经过点,点的横坐标为.

    点,
    ∵反比例函数的图象经过点,

    (2),

    设,则,
    ,即,
    点的坐标为或.
    本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识点,利用数形结合是解答此题的关键.
    25、见解析;
    【解析】
    (1)根据两角对应相等两个三角形相似即可得证.
    (2)根据点E是AC的中点,设AE=x,根据相似三角形的性质可知,从而列出方程解出x的值.
    【详解】
    证明:

    由知
    点是的中点,设,
    解得(不和题意舍去).
    本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题.
    26、(1)D和E;(2)m=,k=25;(3)N的坐标为(-6,-3)或(3,6).
    【解析】
    (1)利用矩形的周长公式、面积公式结合巧点的定义,即可找出点D,E是巧点;
    (2)利用巧点的定义可得出关于m的一元一次方程,解之可得出m的值,再利用反比例函数图象上点的坐标特征,可求出k值;
    (3)设N(x,x+3),根据巧点的定义得到2(|x|+|x+3|)=|x||x+3|,分三种情况讨论即可求解.
    【详解】
    (1)∵(4+4)×2=4×4,(5+)×2=5×,(1+3)×2≠1×3,
    ∴点D和点E是巧点,
    故答案为:D和E;
    (2)∵点M(m,10)(m>0),
    ∴矩形的周长=2(m+10),面积=10m.
    ∵点M是巧点,
    ∴2(m+10)=10m,解得:m=,
    ∴点M(,10).
    ∵点M在双曲线y=上,
    ∴k=×10=25;
    (3)设N(x,x+3),则2(|x|+|x+3|)=|x||x+3|,
    当x≤-3时,化简得:x2+7x+6=0,解得:x=-6或x=-1(舍去);
    当-3<x<0时,化简得:x2+3x+6=0,无实根;
    当x≥0时,化简得:x2-x-6=0,解得:x=3或x=-2(舍去),
    综上,点N的坐标为(-6,-3)或(3,6).
    本题主要考查一次函数图象以及反比例函数图象上点的坐标特征、矩形的周长及面积以及解一元二次方程,理解巧点的定义,分x≤-3、-3<x<0及x≥0三种情况,求出N点的坐标,是解题的关键.
    题号





    总分
    得分

    相关试卷

    2019-2020学年江苏省徐州市睢宁县九年级上学期数学期中试题及答案:

    这是一份2019-2020学年江苏省徐州市睢宁县九年级上学期数学期中试题及答案,共21页。试卷主要包含了方程的解是,二次函数y=﹣3,下列说法中,正确的是,已知等内容,欢迎下载使用。

    2024-2025学年江苏省徐州市树人初级中学九上数学开学调研模拟试题【含答案】:

    这是一份2024-2025学年江苏省徐州市树人初级中学九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析):

    这是一份江苏省徐州市睢宁县2024届九年级上学期期中数学试卷(含解析),共22页。试卷主要包含了11, 有这么一道题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map