2024年江苏省镇江市东部教育集团数学九年级第一学期开学复习检测试题【含答案】
展开
这是一份2024年江苏省镇江市东部教育集团数学九年级第一学期开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )
A.B.C.D.
2、(4分)的值是( )
A.B.3C.±3D.9
3、(4分)若 A(,)、B(,)是一次函数 y=(a-1)x+2 图象上的不同的两个点,当>时,<,则 a 的取值范围是( )
A.a>0B.a<0C.a>1D.a<1
4、(4分)如图,ABCD中,点O为对角线AC、BD的交点,下列结论错误的是( )
A.AC=BDB.AB//DC
C.BO=DOD.∠ABC=∠CDA
5、(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP,CP的延长线分别交AD于点E,F,连接BD,DP,BD与CF交于点H.下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的结论是
A.①②③④B.②③C.①②④D.①③④
6、(4分)若a>b,则下列式子正确的是()
A.a﹣4>b﹣3B.a<bC.3+2a>3+2bD.﹣3a>﹣3b
7、(4分)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为( )
A.16B.8C.D.4
8、(4分)以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线y=kx+3经过点A(2,5)和B(m,-2),则m= ___________.
10、(4分)在△ABC中,AB=17cm,AC=10cm,BC边上的高等于8cm,则BC的长为_____cm.
11、(4分)如图,∠A=90°,∠AOB=30°,AB=2,△可以看作由△AOB绕点O逆时针旋转60°得到的,则点与点B的距离为_______.
12、(4分)菱形有一个内角是120°,其中一条对角线长为9,则菱形的边长为____________.
13、(4分)在平面直角坐标系中,点在第________象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A,B分别在x轴、y轴上,已知,点D为y轴上一点,其坐标为,若连接CD,则,点P从点A出发以每秒1个单位的速度沿线段的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)求的面积S关于t的函数关系式;
(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t值.
15、(8分)如图,四边形是平行四边形,是边上一点.
(1)只用无刻度直尺在边上作点,使得,保留作图痕迹,不写作法;
(2)在(1)的条件下,若,,求四边形的周长.
16、(8分)解下列一元二次方程
(1) (2)
17、(10分)(1)计算 (2)计算.
18、(10分)为了从甲、乙两名选手中选拔出一个人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表.
甲、乙射击成绩统计表
甲、乙射击成绩折线统计图
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.
20、(4分)如图,等腰中,,,线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于______.
21、(4分)写出一个经过点,且y随x的增大而减小的一次函数的关系式:______.
22、(4分)如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,BF=6,则四边形ABEF的面积为________
23、(4分)如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
A.1+B.4+C.4D.-1+
二、解答题(本大题共3个小题,共30分)
24、(8分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?
25、(10分)某校为了改善办公条件,计划从厂家购买A、B两种型号电脑。已知每台A种型号电脑价格比每台B种型号电脑价格多0.1万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.
(1)求A、B两种型号电脑每台价格各为多少万元?
(2)学校预计用不多于9.2万元的资金购进这两种电脑共20台,则最多可购买A种型号电脑多少台?
26、(12分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数的图象经过原点,函数的图象经与y轴交于点(0,5),即它可以看作直线向上平移5个单位长度而得到。比较一次函数解析式与正比例函数解析式,容易得出:一次函数的图象可由直线通过向上(或向下)平移个单位得到(当b>0时,向上平移,当b0,
x===-1±,
所以.
本题考查了解一元二次方程,根据一元二次方程的特点选择适当的方法进行求解是解题的关键.
17、(1)(2)1
【解析】
(1)先进行分母有理化,然后进行加减运算.
(2)根据乘法分配律及二次根式的性质即可求解.
【详解】
(1)
=
=
=
=
(2)
=+
=3+9
=1.
本题考查了二次根式的混合运算,熟练运用二次根式混合运算法则是解题的关键.
18、(1)补图见解析;(2)甲胜出,理由见解析;(3)见解析.
【解析】
(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.
【详解】
(1)根据折线统计图得乙的射击成绩为2,4,6,8,1,1,8,9,9,10,
则平均数为(环),中位数为1.2环,
方差为
.
由图和表可得甲的射击成绩为9,6,1,6,2,1,1,8,9,平均数为1环.
则甲第8次成绩为(环).
所以甲的10次成绩为2,6,6,1,1,1,8,9,9,9,中位数为1环,
方差为
.
补全表格如下:
甲、乙射击成绩统计表
甲、乙射击成绩折线统计图
(2)甲应胜出因为甲的方差小于乙的方差,甲的成绩比较稳定,故甲胜出.
(3)制定的规则不唯一,如:如果希望乙胜出,应该制定的评判规则为平均成绩高的胜出;
如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.
因为甲、乙的平均成绩相同,乙只有第2次射击比第4次射击少命中1环,
且命中1次10环,
而甲第2次比第1次第4次比第3次、第2次比第4次、第9次比第8次命中环数都低,
且命中10环的次数为0,
即随着比赛的进行,乙的射击成绩越来越好,
故乙胜出.
本题考查折线统计图,中位数,方差,平均数,以及统计表,读懂统计图,熟练掌握中位数,方差,平均数的计算是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4或
【解析】
解:①当第三边是斜边时,第三边的长的平方是:32+52=34;
②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,
故答案是:4或.
20、45°
【解析】
由等腰△ABC中,AB=AC,∠A=30°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.
【详解】
∵等腰△ABC中,AB=AC,∠A=30°,∴∠ABC=(180°-30°)÷2=75°,
∵DE是线段AB垂直平分线的交点,
∴AE=BE,∠A=∠ABE=30°,
∴∠CBE=∠ABC-∠ABE=75°-30°=45°.
此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
21、y=-x-1
【解析】
可设,由增减性可取,再把点的坐标代入可求得答案.
【详解】
设一次函数解析式为,
随的增大而减小,
,故可取,
解析式为,
函数图象过点,
,解得,
.
故答案为:(注:答案不唯一,只需满足,且经过的一次函数即可).
本题有要考查一次函数的性质,掌握“在中,当时随的增大而增大,当时随的增大而减小”是解题的关键.
22、24
【解析】
首先证明四边形ABEF是菱形,由勾股定理求出OA,得出AE的长,即可解决问题.
【详解】
连接AE,
∵四边形ABCD为平行四边形
∴AD∥BC,AD=BC
∵BF为∠ABE的平分线,∴∠FBE=∠AFB,∴四边形ABEF为平行四边形
∵AB=AF,
∴根据勾股定理,即可得到AE=2=8.
∴四边形ABEF的面积=×AE×BF=24.
本题考查了菱形的性质和判定,平行四边形的性质和判定,勾股定理,等腰三角形的性质,平行线的性质等知识;证明四边形ABEF是菱形是解决问题的关键.
23、A
【解析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
【详解】
如图,
∵点A坐标为(-2,2),
∴k=-2×2=-4,
∴反比例函数解析式为y=-,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(- ,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
∴t的值为.
故选A.
本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
二、解答题(本大题共3个小题,共30分)
24、50.
【解析】
解:设该厂原来每天加工x个零件,
由题意得:,
解得x=50,
经检验:x=50是原分式方程的解
答:该厂原来每天加工50个零件.
25、(1)A、B两种型号电脑每台价格分别是0.1万元和0.4万元;(2)最多可购买A种型号电脑12台.
【解析】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.根据“用10万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程,解方程即可求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.根据 “用不多于9.2万元的资金购进这两种电脑20台”列出不等式,解不等式即可求解.
【详解】
(1)设求A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x﹣0.1)万元.
根据题意得:,
解得:x=0.1.
经检验:x=0.1是原方程的解,x﹣0.1=0.4
答:A、B两种型号电脑每台价格分别是0.1万元和0.4万元.
(2)设购买A种型号电脑y台,则购买B种型号电脑(20﹣y)台.
根据题意得:0.1y+0.4(20﹣y)≤9.2.
解得:y≤12,
∴最多可购买A种型号电脑12台.
答:最多可购买A种型号电脑12台.
本题考查了分式方程的应用和一元一次不等式的应用.分析题意,找到合适的数量关系是解决问题的关键.
26、【结论应用】y=x,下,1;
【类比思考】①y=-6x-10;②y=-6x-3;
【拓展应用】y=-2x-1.
【解析】
【结论应用】
根据题目材料中给出的结论即可求解;
【类比思考】
①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;
【拓展应用】
在直线:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.
【详解】
解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:
,
解得
,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D(-1,-1)代入得到:
解得
所以直线的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线:y=2x+1上任意取两点A(0,1)和B(1,5),
则点A和B关于x轴的对称点分别为C(0,-1)或D(1,-5),连接CD,则直线CD就是直线AB关于x轴对称的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(0,-1)或D(1,-5)代入得到:
解得
所以直线关于x轴对称的直线的解析式为y=-2x-1.
本题考查了一次函数图象与几何变换,一次函数与二元一次方程(组),考查了学生的阅读理解能力与知识的迁移能力.理解阅读材料是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均数(环)
中位数(环)
方差
命中10环的次数
甲
7
0
乙
1
平均数(环)
中位数(环)
方差
命中10环的次数
甲
1
4
0
乙
1
2.4
1
相关试卷
这是一份2024年江苏省镇江市东部教育集团九上数学开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江苏省镇江市东部教育集团九上数学期末学业质量监测试题含答案,共9页。
这是一份2023-2024学年江苏省镇江市东部教育集团数学九上期末经典试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,如图,中,,,,则,已知sinα=,求α等内容,欢迎下载使用。