2024年江西省抚州市东乡区红星中学九年级数学第一学期开学调研试题【含答案】
展开
这是一份2024年江西省抚州市东乡区红星中学九年级数学第一学期开学调研试题【含答案】,共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列度数不可能是多边形内角和的是( )
A.B.C.D.
2、(4分)如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了( )
A.45mB.7.2mC.52.2mD.57m
3、(4分)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,根据这个规律探索可得,第100个点的坐标为
A.B.C.D.
4、(4分)如图,在中,,,.点,,分别是相应边上的中点,则四边形的周长等于( )
A.8B.9C.12D.13
5、(4分)如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是( )
A.①③B.②④C.①③④D.②③④
6、(4分)下列式子成立的是( )
A.=3B.2﹣=2C.=D.()2=6
7、(4分)如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
A.15尺B.16尺C.17尺D.18尺
8、(4分)如图, △ABC 的周长为 17,点 D, E 在边 BC 上,∠ABC 的平分线垂直于 AE ,垂足为点 N , ∠ACB 的平分线垂直于 AD ,垂足为点 M ,若 BC 6 ,则 MN 的长度为( )
A.B.2C.D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
10、(4分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G是EF的中点,连接CG、BG、BD、DG,下列结论:① BC=DF,②∠DGF=135;③BG⊥DG,④ 若3AD=4AB,则4S△BDG=25S△DGF;正确的是____________(只填番号).
11、(4分)如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.
12、(4分)如图,在平行四边形ABCD中,以顶点A为圆心,AD长为半径,在AB边上截取AE=AD,用尺规作图法作出∠BAD的角平分线AG,若AD=5,DE=6,则AG的长是_________________.
13、(4分)如图,直线经过点,则关于的不等式的解集是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,已知点A.B在双曲线y= (x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.
(1)设A的横坐标为m,试用m、k表示B的坐标.
(2)试判断四边形ABCD的形状,并说明理由.
(3)若△ABP的面积为3,求该双曲线的解析式.
15、(8分)如图,在▱ABCD中,O是对角线AC的中点,AB⊥AC,BC=4cm,∠B=60°,动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,连结PO并延长交折线DA﹣AB于点Q,设点P的运动时间为t(s).
(1)当PQ与▱ABCD的边垂直时,求PQ的长;
(2)当t取何值时,以A,P,C,Q四点组成的四边形是矩形,并说明理由;
(3)当t取何值时,CQ所在直线恰好将▱ABCD的面积分成1:3的两部分.
16、(8分)如图,在中,,平分,于.
(1)求证:;
(2)若,,求的面积.
17、(10分)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.
18、(10分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=10,求点E的坐标.
(3)结合图像写出不等式的解集;
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若不等式组有且仅有3个整数解,则的取值范围是___________.
20、(4分)如图,在正方形中,是边上的点.若的面积为,,则的长为_________.
21、(4分)实数,在数轴上对应点的位置如图所示,化简的结果是__________.
22、(4分)点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为 .
23、(4分)若a=,b=,则=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在△ABC 中,∠BAC=90°,AB0).
(1)△PBM 与△QNM 相似吗?请说明理由;
(2)若∠ABC=60°,AB=4 cm.
①求动点 Q 的运动速度;
②设△APQ 的面积为 s(cm2),求 S 与 t 的函数关系式.(不必写出 t 的取值范围)
(3)探求 BP²、PQ²、CQ² 三者之间的数量关系,请说明理由.
25、(10分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,
(1)如图1,求证:△AMC≌△AND;
(2)如图1,若DF=,求AE的长;
(3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.
26、(12分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
(1)构造一个真命题,画图并给出证明;
(2)构造一个假命题,举反例加以说明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据多边形内角和定理求解即可.
【详解】
正多边形内角和定理n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数)
A.,正确;
B.,错误;
C.,正确;
D.,正确;
故答案为:B.
本题考查了多边形内角和的问题,掌握多边形内角和定理是解题的关键.
2、C
【解析】
设甲与乙的距离为s,根据图像可求出解析式,即可进行求解.
【详解】
解:设甲与乙的距离为s,则关于t的函数为s=kt+b(k≠0),
将(0,12)(50,0)代入
得,
解得k=﹣0.24,b=12,
函数表达式,s=﹣0.24t+12(0≤t≤50),
则30秒后,s=4.8
设甲自A点移动的距离为y,则y+s=12+1.5×30
解得:y=52.2
∴甲自A点移动52.2m.
故选:C.
此题主要考查一次函数的图像,解题的关键是熟知一次函数解析式的求解.
3、D
【解析】
从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,依此类推横坐标为n的有n个点题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.
【详解】
在横坐标上,第一列有一个点,第二列有2个点第n个有n个点,
并且奇数列点数对称而偶数列点数y轴上方比下方多一个,
所以奇数列的坐标为;
偶数列的坐标为,
由加法推算可得到第100个点位于第14列自上而下第六行.
代入上式得,即.
故选D.
本题是一道找规律题,主要考查了点的规律.培养学生对坐平面直角坐标系的熟练运用能力是解题的关键.
4、B
【解析】
根据三角形中位线的性质及线段的中点性质求解即可.
【详解】
解:点,,分别是相应边上的中点
是三角形ABC的中位线
同理可得,
四边形的周长
故答案为:B
本题考查了三角形的中位线,熟练运用三角形中位线的性质求线段长是解题的关键.
5、A
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.
【详解】
解:①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,由①知AE=AF,
∴△AEF是等边三角形,
∴∠AEF=60°,
又△CEF为等腰直角三角形,
∴∠CEF=45°
∴∠AEB=180°-∠AEF-∠CEF=75°,
∴∠AEB≠∠AEF,故④错误.
综上所述,正确的有①③,
故选:A.
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
6、A
【解析】
运用二次根式的相关定义、运算、化简即可求解.
【详解】
解:A:是求的算术平方根,即为3,故正确;
B:2﹣=,故B错误;
C:上下同乘以,应为,故C错误;
D:的平方应为3,而不是6,故D错误.
故答案为A.
本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.
7、C
【解析】
我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB'的长为16尺,则B'C=8尺,设出AB=AB'=x尺,表示出水深AC,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长.
【详解】
解:依题意画出图形,
设芦苇长AB=AB′=x尺,则水深AC=(x-2)尺,
因为B'E=16尺,所以B'C=8尺
在Rt△AB'C中,82+(x-2)2=x2,
解之得:x=17,
即芦苇长17尺.
故选C.
本题主要考查勾股定理的应用,熟悉数形结合的解题思想是解题关键.
8、C
【解析】
证明,得到,即是等腰三角形,同理是等腰三角形,根据题意求出,根据三角形中位线定理计算即可.
【详解】
平分,,
,,
在和中,
,
,
,
是等腰三角形,
同理是等腰三角形,
点是中点,点是中点(三线合一),
是的中位线,
,
,
.
故选.
本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1
【解析】
首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BG,AD=BC,
∴∠DAE=∠G=30°,
∵DE=EC,∠AED=∠GEC,
∴△ADE≌△GCE,
∴AE=EG=AD=CG=1,
在Rt△BFG中,∵FG=BG•cs30°=,
∴EF=FG-EG=-1,
故答案为-1.
本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
10、①③④
【解析】
根据矩形的性质得:BC=AD,∠BAD=∠ADC=90°,由角平分线可得△ADF是等腰直角三角形,则BC=DF=AD,故①正确;
先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD;再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明△BEG≌△DCG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②错误;
由全等三角形的性质可得∠BGE=∠DGC,即可得到③正确;
由△BGD是等腰直角三角形得到BD=5a,求得S△BDG,过G作GM⊥CF于M,求得S△DGF,进而得出答案.
【详解】
∵四边形ABCD是矩形,∴BC=AD,∠BAD=∠ADC=90°.
∵AF平分∠BAD,∴∠BAE=∠DAF=45°,∴△ADF是等腰直角三角形,∴DF=AD,∴BC=DF,故选项①正确;
∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°.
∵AB=CD,∴BE=CD;
∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形.
∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°.
在△BEG和△DCG中,∵,∴△BEG≌△DCG(SAS),∴∠BGE=∠DGC.
∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°.
∵∠CGF=90°,∴∠DGF<135°,故②错误;
∵△BEG≌△DCG,∴∠BGE=∠DGC,BG=DG.
∵∠EGC=90°,∴∠BGD=90°,∴BG⊥DG,故③正确;
∵3AD=4AB,∴,∴设AB=3a,则AD=4a.
∵BD=5a,∴BG=DGa,∴S△BDGa1.
过G作GM⊥CF于M.
∵CE=CF=BC﹣BE=BC﹣AB=a,∴GMCFa,∴S△DGF•DF•GM4aa=a1,∴S△BDGS△DGF,∴4S△BDG=15S△DGF,故④正确.
故答案为①③④.
本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.
11、
【解析】
如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.
【详解】
解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.
∵四边形ABCD是正方形,
∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,
∵四边形EFGH是正方形,
∴∠MEN=∠AEB=90°,
∴∠AEM=∠BEN,
∴△AEM≌△BEN(ASA),
∴AM=BN,EM=EN,∠AME=∠BNE,
∵AB=BC,EF=EH,
∴FM=NH,BM=CN,
∵∠FMB=∠AME,∠CNH=∠BNE,
∴∠FMB=∠CNH,
∴△FMB≌△HNC(SAS),
∴∠MFB=∠NHC,
∵∠EFO+∠EOF=90°,∠EOF=∠POH,
∴∠POH+∠PHO=90°,
∴∠OPH=∠BPC=90°,
∵∠DBP=75°,∠DBC=45°,
∴∠CBP=30°,
∵BC=AB=2,
∴PB=BC•cs30°=,PR=PB=,RC=PR•tan30°=,
∵∠RTD=∠TDC=∠DCR=90°,
∴四边形TDCR是矩形,
∴TD=CR=,TR=CD=AB=2,
在Rt△PDT中,PD2=DT2+PT2=,
故答案为.
本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
12、1
【解析】
首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;
【详解】
解:分别以D和E作为圆心,以略长于EH的长度为半径作弧,交于点F,连接AF并延长,交CD于G,则AG即为∠BAD的角平分线,
设AG交BD于H,则AG垂直平分线线段DE(等腰三角形三线合一),
∴DH=EH=3,
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠AGD=∠GAB,
∵∠DAG=∠GAB,
∴∠DAG=∠DGA,
∴DA=DG,
∵DE⊥AG,
∴AH=GH(等腰三角形三线合一),
在Rt△ADH中,AH= ,
∴AG=2AH=1,
故答案为1.
本题考查作图-复杂作图、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题;
13、
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
解:观察图像可知:当x>2时,y<1.
所以关于x的不等式kx+3<1的解集是x>2.
故答案为:x>2.
本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b0)上,
∴B(2m,).
(2)连接AD、CD、BC;
∵AC⊥x轴于C,BD⊥y轴于点D,
∴AC⊥BD;
∵A(m, ),B(2m, ),
∴P(m, ),
∴PD=PB,
又AP=PC,
∴四边形ABCD是菱形;
(3)∵△ABP的面积为⋅BP⋅AP=3,
∴BP⋅AP=1,
∵P是AC的中点,
∴A点的纵坐标是B点纵坐标的2倍,
又∵点A. B都在双曲线y= (x>0)上,
∴B点的横坐标是A点横坐标的2倍,
∴OC=DP=BP,
∴k=OC⋅AC=BP⋅2AP=12.
∴该双曲线的解析式是:y= .
此题考查反比例函数综合题,解题关键在于作辅助线.
15、 (1)PQ=cm或2cm;(2)t=秒;(3)t为1秒或秒.
【解析】
(1)分当PQ⊥BC和当PQ⊥CD两种情况,利用含30度角的直角三角形的性质即可得出结论;
(2)当点P在BC边和当点P在CD上两种情况,利用矩形的性质即可得出结论;
(3)利用平行四边形的性质得出S△ABC=S△ACD=S▱ABCD,进而分当点Q在边AD上和点Q在边AB上利用三角形的中线的性质即可得出结论.
【详解】
解:(1)当PQ⊥BC时,如图1,
∵AB⊥AC,
∴∠BAC=90°,
在Rt△ABC中,BC=4cm,∠B=60°,
∴∠ACB=30°,AB=2,AC=2,
∵点O是AC的中点,
∴OC=AC=,
在Rt△OPC中,OP=OC=,
易知,△AOQ≌△COP,
∴OQ=OP,
∴PQ=2OP=cm,
当PQ⊥CD时,∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ACD=∠BAC=90°,
∴点P与点C重合,点Q和点A重合,
∴PQ=AC=2cm,
综上所述,当PQ与▱ABCD的边垂直时,PQ=cm或2cm.
(2)当点P在BC边时,如图2,
∵四边形APCQ是矩形,
∴∠APC=90°,
在Rt△ABP中,∠B=60°,AB=2cm,∴BP=1cm,
∵动点P从点B出发,以2cm/s的速度沿折线BC﹣CD向终点D运动,
∴t=1÷2=秒,
当点P在CD上时,∵四边形AQCP是矩形,
∴∠AQC=90°,
∵∠BAC=90°,由过点C垂直于AB的直线有且只有一条,得出此种情况不存在,
即:当t=秒时,以点A,P,C,Q为顶点的四边形知矩形;
(3)∵AC是平行四边形ABCD的对角线,
∴S△ABC=S△ACD=S▱ABCD,
∵CQ所在直线恰好将▱ABCD的面积分成1:3的两部分,
∴当点Q在边AD上时,
∴点Q是AD的中点,
∴AQ=AD,
易知,△AOQ≌△COP,
∴CP=AQ=AD=BC=2,
∴BP=2,
∴t=2÷2=1秒,
当点Q在边AB上时,同理:点P是CD的中点,
∴t=(4+1)÷2=秒,
即:t为1秒或秒时,CQ将平行四边形ABCD的面积分成1:3两部分.
本题考查的是四边形综合题,熟练掌握全等三角形的性质和三角形的性质是解题的关键.
16、(1)见解析;(2)的面积为15.
【解析】
(1)根据角平分线上的点到角的两边距离相等证明,再得到结论;
(2)利用勾股定理列式求出BC,再根据△ABC的面积列出方程求出DE,然后根据三角形的面积公式列式计算即可得解.
【详解】
(1)∵,,
∴
∵平分,
∴,
又∵,
∴
∴.
(2)在中,,,,
由勾股定理得:,
∴.,
在中,由(1)可设,
由勾股定理得:,
解得,
∴的面积为 ,
∴的面积为.
考查了角平分线上的点到角的两边距离相等的性质,勾股定理,难点在于(2)利用三角形的面积列方程求出DE.
17、原式==
【解析】
分析:首先将分式进行通分,然后根据除法的计算法则进行约分化简,最后将x和y的值代入化简后的式子进行计算得出答案.
详解:解:原式=,
当x=+1,y=﹣1时,原式=.
点睛:本题主要考查的就是分式的化简求值以及二次根式的计算,属于简单题型.在解答这个问题的时候,明确分式的化简法则是基础.
18、(1)y=,y=-x+1;(3)点E的坐标为(0,5)或(0,4);(3)0<x<3或x>13
【解析】
(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线,求出k、b的值,从而得出一次函数的解析式;
(3)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,1),得出PE=|m﹣1|,根据S△AEB=S△BEP﹣S△AEP=3,求出m的值,从而得出点E的坐标.
(3)根据函数图象比较函数值的大小.
【详解】
解:(1)把点A(3,6)代入y=,得m=13,则y=.
得,解得把点B(n,1)代入y=,得n=13,则点B的坐标为(13,1).
由直线y=kx+b过点A(3,6),点B(13,1),
则所求一次函数的表达式为y=﹣x+1.
(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,1).∴PE=|m﹣1|.
∵S△AEB=S△BEP﹣S△AEP=3,∴×|m﹣1|×(13﹣3)=3.
∴|m﹣1|=3.∴m1=5,m3=4.∴点E的坐标为(0,5)或(0,4).
(3)根据函数图象可得的解集:或;
考核知识点:反比例函数和一次函数的综合运用.熟记函数性质是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1≤a<2
【解析】
此题需要首先解不等式,根据解的情况确定a的取值范围.特别是要注意不等号中等号的取舍.
【详解】
解:解不等式x+a≥0得:x≥-a,
解不等式1-1x>x-1得:x<1,
∵此不等式组有2个整数解,
∴这2个整数解为-1,-1,0,
∴a的取值范围是-2<a≤-1.
故答案为:1≤a<2.
此题考查一元一次不等式组的解法.解题关键在于要注意分析不等式组的解集的确定.
20、
【解析】
过E作EM⊥AB于M,利用三角形ABE的面积进行列方程求出AB的长度,再利用勾股定理求解BE的长度即可.
【详解】
过E作EM⊥AB于M,
∵四边形ABCD是正方形,
∴AD=BC=CD=AB,
∴EM=AD,BM=CE,
∵△ABE的面积为4.5,
∴×AB×EM=4.5,
解得:EM=3,
即AD=DC=BC=AB=3,
∵DE=1
∴CE=2,
由勾股定理得:BE= .
故答案为
本题考查了正方形的性质、三角形的面积及勾股定理,掌握正方形的性质及勾股定理是解题的关键.
21、
【解析】
由图可知:a<0,a﹣b<0,则原式=﹣a﹣(a﹣b)=﹣2a+b=.故答案为.
22、12或4
【解析】
试题分析:当图形处于同一个象限时,则k=8+4=12;当图形不在同一个象限时,则k=8-4=4.
考点:反比例函数的性质
23、
【解析】
先运用平方差公式把化为(a+b)(a-b),然后将a与b的值代入计算即可求出值.
【详解】
解:∵=(a+b)(a-b),
∴=2×(-2)=.
此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(1)①v=1;②S= (3)
【解析】
(1)由条件可以得出∠BMP=∠NMQ,∠B=∠MNC,就可以得出△PBM∽△QNM;
(1)①根据直角三角形的性质和中垂线的性质BM、MN的值,再由△PBM∽△QNM就可以求出Q的运动速度;
②先由条件表示出AN、AP和AQ,再由三角形的面积公式就可以求出其解析式;
(3)延长QM到D,使MD=MQ,连接PD、BD、BQ、CD,就可以得出四边形BDCQ为平行四边形,再由勾股定理和中垂线的性质就可以得出PQ1=CQ1+BP1.
【详解】
解:(1)△PBM∽△QNM.
理由:
∵MQ⊥MP,MN⊥BC,
∴∠PMN+∠PMB=90°,∠QMN+∠PMN=90°,
∴∠PMB=∠QMN.
∵∠B+∠C=90°,∠C+∠MNQ=90°,
∴∠B=∠MNQ,
∴△PBM∽△QNM.
(1)∵∠BAC=90°,∠ABC=60°,
∴BC=1AB=8cm.AC=11cm,
∵MN垂直平分BC,
∴BM=CM=4cm.
∵∠C=30°,
∴MN=CM=4cm.
①设Q点的运动速度为v(cm/s).
∵△PBM∽△QNM.
∴,
∴,
∴v=1,
答:Q点的运动速度为1cm/s.
②∵AN=AC-NC=11-8=4cm,
∴AP=4-t,AQ=4+t,
∴S=AP•AQ=(4-t)(4+t)=-t1+8.(0<t≤4)
当t>4时,AP=-t+4=(4-t).
则△APQ的面积为:S=AP•AQ=(-t+4)(4+t)=t1-8
(3)PQ1=CQ1+BP1.
理由:延长QM到D,使MD=MQ,连接PD、BD、BQ、CD,
∵M是BC边的中点,
∴BM=CM,
∴四边形BDCQ是平行四边形,
∴BD∥CQ,BD=CQ.
∴∠BAC+∠ABD=180°.
∵∠BAC=90°,
∴∠ABD=90°,
在Rt△PBD中,由勾股定理得:
PD1=BP1+BD1,
∴PD1=BP1+CQ1.
∵MQ⊥MP,MQ=MD,
∴PQ=PD,
∴PQ1=BP1+CQ1.
本题是一道相似形的综合试题,考查了相似三角形的判定与性质的运用,三角形的面积公式的运用,平行四边形的判定与性质的运用,中垂线的判定与性质的运用,解题时求出△PBM∽△QNM是关键.正确作出辅助线是难点.
25、(1)见解析;(2)AE=;(3)(3),理由见解析.
【解析】
(1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.
(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE= GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;
(3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到 ,可知∥, 再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.
【详解】
(1)证明:∵四边形AMFN是正方形,
∴AM=AN ∠AMC=∠N=90°
∴△AMC,△AND是Rt△
∵△ABC是等边三角形
∴AB=AC
∵旋转后AB=AD
∴AC=AD
∴Rt△AMC≌Rt△AND(HL)
(2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,
设AG=
则AE= GE=
易得△GBE是等腰直角三角形
∴BG=EG=
∴AB=BC=
易得∠DHF=30°
∴HD=2DF= ,HF=
∴BF=BH+HF=
∵Rt△AMC≌Rt△AND(HL)
∴易得CF=DF=
∴BC=BF-CF=
∴
∴
∴AE=
(3);
理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,
∴ ,
∴∥,
∴
∵
∴
∴,
∵
∴≌(SAS)
∴
∴
∴是等腰直角三角形
∴
∴
∴
本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.
26、(1)见解析;(2)见解析.
【解析】
【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.
【详解】(1)①④为条件时:
∵AD∥BC,
∴∠DAC=∠BCA,∠ADB=∠DBC,
又∵OA=OC,
∴△AOD≌△COB,
∴AD=BC,
∴四边形ABCD为平行四边形;
(2)②④为条件时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.
【点睛】本题考查了平行四边形的判定,真命题与假命题,熟知举出符合条件不符合结论的例子来说明一个命题是假命题是关键;本题中用等腰梯形做反例来推翻不是平行四边形的论断.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年江西省抚州市临川区第四中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年江西省抚州市东乡区红星中学九上数学期末质量检测试题含答案,共7页。试卷主要包含了桌面上放有6张卡片等内容,欢迎下载使用。
这是一份2023-2024学年江西省抚州市东乡区红星中学数学八上期末考试模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列各数,准确数是等内容,欢迎下载使用。