搜索
    上传资料 赚现金
    英语朗读宝

    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】

    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】第1页
    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】第2页
    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】

    展开

    这是一份2024年江西省高安市高安二中学九上数学开学考试模拟试题【含答案】,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)一次函数的图像经过点,且的值随值的增大而增大,则点的坐标可以为( )
    A.B.C.D.
    2、(4分)一组数据2,7,6,3,4, 7的众数和中位数分别是 ( )
    A.7和4.5B.4和6C.7和4D.7和5
    3、(4分)下列等式从左到右的变形,属于因式分解的是( )
    A.B.
    C.D.
    4、(4分)某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是( )
    A.中位数是75B.平均数是80C.众数是80D.极差是15
    5、(4分)直角三角形的两条直角边分别是6,8,则此直角三角形三条中线的和是( )
    A.B.
    C.D.
    6、(4分)如图,中,点在边上,点在边上,且,则与相似的三角形的个数为( )
    A.4个B.3个C.2个D.1个
    7、(4分)下面各组数是三角形三边长,其中为直角三角形的是 ( )
    A.8,12,15B.5,6,8C.8,15,17D.10,15,20
    8、(4分)如图,四边形为平行四边形,延长到点,使,连接,,.添加一个条件,不能使四边形成为矩形的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一元二次方程 的一次项系数为_________.
    10、(4分)如图,在菱形中,过点作交对角线于点,且,则_____.
    11、(4分)观察下列各式:



    ……
    请利用你所发现的规律,
    计算+++…+,其结果为_______.
    12、(4分)一组数据15、13、14、13、16、13的众数是______,中位数是______.
    13、(4分)已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)某商店计划购进,两种型号的电机,其中每台型电机的进价比型多元,且用元购进型电机的数量与用元购进型电机的数量相等.
    (1)求,两种型号电机的进价;
    (2)该商店打算用不超过元的资金购进,两种型号的电机共台,至少需要购进多少台型电机?
    15、(8分)无锡阳山水蜜桃上市后,甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,甲超市销售方案是:将水蜜桃按分类包装销售,其中挑出优质大个的水蜜桃400箱,以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.乙超市的销售方案是:不将水蜜桃分类,直接销售,价格按甲超市分类销售的两种水蜜桃售价的平均数定价.若两超市将水蜜桃全部售完,其中甲超市获利42000元(其它成本不计).问:
    (1)水蜜桃进价为每箱多少元?
    (2)乙超市获利多少元?哪种销售方式更合算?
    16、(8分)如图,已知矩形ABCD中,点E是AB边上的一个动点,点F、G、H分别是CD、DE、CE的中点.
    (1)求证:四边形EHFG是平行四边形;
    (2)设AB=4,AD=3,求△EFG的面积.
    17、(10分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.
    18、(10分)如图,矩形中,,画出面积不相等的2个菱形,使菱形的顶点都在矩形的边上.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.
    20、(4分)已知y与2x成正比例,且当x=1时y=4,则y关于x的函数解析式是__________.
    21、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
    22、(4分)已知1<x<5,化简+|x-5|=____.
    23、(4分)抛物线有最_______点.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)已知:如图,在□ABCD中,点E在AB上,点F在CD上,且DE∥BF.求证:DE = BF.
    25、(10分)如图,在四边形中,,点在上,,,.
    (1)求的度数;
    (2)直接写出四边形的面积为 .
    26、(12分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
    (1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;
    (2)求本次调查获取的样本数据的平均数;
    (3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    y的值随x值的增大而増大,可知函数y=kx-1图象经过第一、三、四象限,结合选项判断点(1,-3)符合题意.
    【详解】
    解:y的值随x值的增大而増大,
    ∴k>0,
    ∴函数图象经过第一、三、四象限,
    点(1,-3)、点(5,3)和点(5,-1)符合条件,
    当经过(5,-1)时,k=0,
    当经过(1,-3)时,k=-2,
    当经过(5,3)时,k=,
    故选:A.
    本题考查一次函数图象及性质;熟练掌握一次函数图象性质,点与函数图象的关系是解题的关键.
    2、D
    【解析】
    试题解析:这组数据按照从小到大的顺序排列为:2,3,4,6,7,7,
    则众数为:7,
    中位数为:
    故选D.
    考点:1.众数;2.中位数.
    3、B
    【解析】
    根据因式分解的定义逐个判断即可.
    【详解】
    解:A、不是因式分解,故本选项不符合题意;
    B、是因式分解,故本选项符合题意;
    C、不是因式分解,故本选项不符合题意;
    D、不是因式分解,故本选项不符合题意;
    故选:B.
    本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,把一个多项式化成几个整式的积的形式,叫因式分解.
    4、A
    【解析】
    根据平均数,中位数,众数及极差的概念进行判断.
    【详解】
    解:将6名同学的成绩从小到大排列,第3、4个数都是80,故中位数是80,
    ∴答案A是错误的,其余选项均正确.
    故选:A.
    本题重点考查平均数,中位数,众数及极差的概念及其求法.
    5、C
    【解析】
    利用勾股定理,根据中线的定义计算即可.
    【详解】
    解:∵直角三角形的两条直角边分别是6,8,
    ∴斜边=10,
    ∴此直角三角形三条中线的和= ,
    故选:C.
    此题考查了勾股定理的运用以及中线的定义,比较基础,注意数据的计算.
    6、C
    【解析】
    由∠1=∠2=∠3,即可得DE∥BC,可得∠EDC=∠BCD,然后根据有两组角对应相等的两个三角形相似,即可判定△ADE∽△ABC,△ACD∽△ABC,又由相似三角形的传递性,可得△ADE∽△ABC∽△ACD,继而求得答案.
    【详解】
    ∵∠1=∠2,
    ∴DE∥BC,
    ∴∠EDC=∠DCB,△ADE∽△ABC,
    ∵∠2=∠3,∠A=∠A,
    ∴△ACD∽△ABC,
    ∴△ADE∽△ABC∽△ACD,
    ∴图中与△ADE相似三角形共有2对.
    故选C.
    此题考查了相似三角形的判定.此题难度不大,解题的关键是掌握有两组角对应相等的两个三角形相似定理的应用,注意数形结合思想的应用.
    7、C
    【解析】
    试题分析:A.82+122≠152,故不是直角三角形,错误;
    B.52+62≠82,故不是直角三角形,错误;
    C.82+152=172,故是直角三角形,正确;
    D.102+152≠202,故不是直角三角形,错误.
    故选C.
    考点:勾股定理的逆定理.
    8、C
    【解析】
    先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AD∥BC,AD=BC,
    又∵AD=DE,
    ∴DE∥BC,且DE=BC,
    ∴四边形BCED为平行四边形,
    A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
    B、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
    C、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
    D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.
    故选:C.
    本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形BCDE为平行四边形是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项.
    【详解】
    解:一元二次方程 的一次项系数为-1.
    故答案为:.
    本题考查的知识点是一元二次方程的一般形式,是基础题目,易于理解掌握.
    10、
    【解析】
    根据菱形的性质与三角形的外角定理即可求解.
    【详解】
    ∵四边形ABCD是菱形,故∠DBC=∠BDC,
    ∵,∴∠BDC=∠ECD,
    ∴∠BEC=∠BDC+∠ECD=2∠BDC=2∠DBC

    ∴∠DBC+∠BEC=3∠DBC=90°,得∠DBC=30°,
    故∠BEC=90°-∠DBC=60°,
    故填60°.
    此题主要考查菱形的性质,解题的关键是熟知菱形的性质、等腰三角形的性质、三角形的外角定理.
    11、
    【解析】
    分析:直接根据已知数据变化规律进而将原式变形求出答案.
    详解:由题意可得:
    +++…+
    =+1++1++…+1+
    =9+(1﹣+﹣+﹣+…+﹣)
    =9+
    =9.
    故答案为9.
    点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.
    12、13 13.5
    【解析】
    这组数据中出现次数最多的数为众数;把这组数按从小到大的顺序排列,因为数的个数是偶数个,那么中间两个数的平均数即是中位数由此解答.
    【详解】
    解:∵15、13、14、13、16、13中13出现次数最多有3次,
    ∴众数为13,
    将这组数从小到大排列为:13,13,13,14,15,16,最中间的两个数是13,14,所以中位数=(13+14)÷2=13.5
    故答案为:13;13.5.
    此题主要考查了中位数和众数的含义.
    13、x1<x1.
    【解析】
    根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.
    【详解】
    ∵反比例函数y=(x>0),
    ∴该函数图象在第一象限,y随x的增大而减小,
    ∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,
    ∴x1<x1,
    故答案为:x1<x1.
    本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
    三、解答题(本大题共5个小题,共48分)
    14、(1)进价元,进价元;(2)购进型至少台
    【解析】
    (1) 设进价为元,则进价为元,根据元购进型电机的数量与用元购进型电机的数量相等,即可得出关于x的分式方程,解分式方程经检验后即可得出结论;
    (2) 设购进型台,则购进型台,根据用不超过元的资金购进,两种型号的电机共台,即可得出关于y的一元一次不等式,解不等式即可得出结论.
    【详解】
    (1)解:设进价为元,则进价为元,
    解得:
    经检验是原分式方程的解
    进价元,进价元.
    (2)设购进型台,则购进型台.
    购进型至少台.
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,正确列出分式方程.
    15、 (1)水蜜桃进价为每箱100元; (2)乙超市获利为33000元,甲种销售方式获利多.
    【解析】
    (1)设水蜜桃进价为每箱x元,根据利润=(售价-进价)×箱数,利用甲超市获利42000元列分式方程即可求出x的值,检验即可得答案;(2)根据进价可得甲超市的售价,即可求出乙超市的售价,根据进价和总价可求出购进箱数,即可求出乙超市的利润,与42000元比较即可得答案.
    【详解】
    设水蜜桃进价为每箱x元,
    ∴,
    解得:x=100,
    经检验x=100是分式方程的解,且符合题意,
    则水蜜桃进价为每箱100元;
    (2)∵挑出优质大个的水蜜桃以进价的2倍价格销售,剩下的水蜜桃以高于进价10%销售.
    ∴甲超市水蜜桃的售价是200元/箱和110元/箱,
    ∴乙超市售价为,
    ∵甲、乙两超市分别用60000元以相同的进价购进相同箱数的水蜜桃,
    ∴乙超市购进水蜜桃:60000÷100=600(箱)
    ∴乙超市获利为600×(155-100)=33000(元),
    ∵42000元>33000元,
    ∴甲种销售方式获利多.
    本题考查分式方程的应用,根据题意找出等量关系列出方程是解题关键.
    16、(1)见解析;(2)S△FEG=.
    【解析】
    (1)根据三角形的中位线定理求出FH∥DE,FG∥CE,根据平行四边形的判定求出即可;
    (2)根据中线分三角形的面积为相等的两部分求解即可.
    【详解】
    (1)证明:因为点F、G、H分别是CD、DE、CE的中点,
    所以,FH∥GE,FG∥EH,
    所以,四边形EHFG是平行四边形;
    (2)因为F为CD的中点,
    所以DF=CD=AB=2,
    因为G为DE的中点,所以,S△FDG=S△FEG,
    所以,S△FEG=S△EFD=.
    本题考查了矩形的性质,三角形的面积,平行四边形的判定等知识点,能正确运用等底等高的三角形的面积相等进行计算是解此题的关键.
    17、见解析
    【解析】
    根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.
    【详解】
    解:∵AE=a,DE=b,AD=c,
    ∴S正方形EFGH=EH1=(a+b)1,
    S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,
    ∴(a+b)1=1ab+c1,
    ∴a1+b1=c1.
    本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.
    18、见解析
    【解析】
    如图1,作BD的垂直平分线交AB于E,交CD于F,则BD与EF互相垂直平分,则四边形BEDF为菱形;如图2,在DC上截取DM=DA,在AB上截取AN=AD,易得四边形ANMD为菱形,菱形BEDF和菱形ANMD满足条件.
    【详解】
    解:如图1,四边形BEDF为所作;
    如图2,四边形ADMN为所作.
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1cm
    【解析】
    根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.
    【详解】
    解:设截去的小正方形的边长为,由题意得,,
    整理得,
    解得.
    当时,<0, <0,不符合题意,应舍去;
    当时,>0,>0,符合题意,所以=1.
    故截去的小正方形的边长为1cm.
    故答案为:1cm
    本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.
    20、y=4x
    【解析】
    根据y与1x成正比例,当x=1时,y=4,用待定系数法可求出函数关系式.
    【详解】
    解:设所求的函数解析式为:y=k•1x,
    将x=1,y=4代入,得:4=k•1,
    所以:k=1.
    则y关于x的函数解析式是:y=4x.
    故答案为:y=4x.
    本题考查待定系数法求解析式,解题关键是根据已知条件,用待定系数法求得函数解析式k的值,写出y关于x的函数解析式.
    21、34
    【解析】
    试题解析:解:设这7个数的中位数是x,
    根据题意可得:,
    解方程可得:x=34.
    考点:中位数、平均数
    点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.
    22、4
    【解析】
    【分析】由已知判断x-1>0,x-5

    相关试卷

    2024年江西省高安市第四中学九上数学开学复习检测试题【含答案】:

    这是一份2024年江西省高安市第四中学九上数学开学复习检测试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省高安市高安二中学2023-2024学年数学九上期末教学质量检测模拟试题含答案:

    这是一份江西省高安市高安二中学2023-2024学年数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,把多项式分解因式,结果正确的是,反比例函数的图象位于等内容,欢迎下载使用。

    江西省高安市高安二中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案:

    这是一份江西省高安市高安二中学2023-2024学年数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map