终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年景德镇市重点中学九上数学开学预测试题【含答案】

    立即下载
    加入资料篮
    2024年景德镇市重点中学九上数学开学预测试题【含答案】第1页
    2024年景德镇市重点中学九上数学开学预测试题【含答案】第2页
    2024年景德镇市重点中学九上数学开学预测试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年景德镇市重点中学九上数学开学预测试题【含答案】

    展开

    这是一份2024年景德镇市重点中学九上数学开学预测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)以下列各数为边长,能构成直角三角形的是( )
    A.1,,2B.,,C.5,11,12D.9,15,17
    2、(4分)一次函数y=kx﹣6(k<0)的图象大致是( )
    A.B.
    C.D.
    3、(4分)以下列三个数据为三角形的三边,其中能构成直角三角形的是( )
    A.2,3,4B.4,5,6C.5,12,13D.5,6,7
    4、(4分)如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E,则以下AE与CE的数量关系正确的是( )
    A.AE=CEB.AE=CEC.AE=CED.AE=2CE
    5、(4分)不等式组的解集是
    A.x≥8B.x>2C.0<x<2D.2<x≤8
    6、(4分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为( )cm2
    A.4B.16C.12D.8
    7、(4分)如图,以原点O为圆心,OB长为半径画弧与数轴交于点A,若点A表示的数为x,则x的值为( )
    A.B.-C.-2D.2-
    8、(4分)对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表:
    由上表可知,这20户家庭该月节约用水量的平均数是( )
    A.1.8tB.2.3tC.2.5tD.3 t
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)从A,B两题中任选一题作答:
    A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
    B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
    10、(4分)如图,AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,AD=2,BC=10,则EF+PQ长为__________.
    11、(4分)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于_____.
    12、(4分)函数y=-6x+8的图象,可以看作由直线y=-6x向_____平移_____个单位长度而得到.
    13、(4分)如图,矩形中,,,是边上一点,连接,将沿翻折,点的对应点是,连接,当是直角三角形时,则的值是________
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.
    (1)请补全下表:
    (2)填空:
    由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出.
    (3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
    15、(8分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.
    (1)求证:△BFO≌△DEO;
    (2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;
    (3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.
    16、(8分)(1)计算:
    (2)已知 ,求 的值
    17、(10分)四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。
    (1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;
    (2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。你认为这个游戏是否公平?请说明理由。
    18、(10分)某校为了解八年级男生立定跳远测试情况,随机抽取了部分八年级男生的测试成绩进行统计,根据评分标准,将他们的成绩分为优秀、良好、及格、不及格四个等级,以下是根据调查结果绘制的统计图表的一部分.
    根据以上信息,解答下列问题:
    (1)被调查的男生中,成绩等级为不及格的男生人数有__________人,成绩等级为良好的男生人数占被调查男生人数的百分比为__________%;
    (2)被调查男生的总数为__________人,条形统计图中优秀的男生人数为__________人;
    (3)若该校八年级共有300名男生,根据调查结果,估计该校八年级男生立定跳远测试成绩为良好和优秀的男生人数.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图是某地区出租车单程收费y(元)与行驶路程x(km)之间的函数关系图象,根据图象回答下列问题:
    (Ⅰ)该地区出租车的起步价是_____元;
    (Ⅱ)求超出3千米,收费y(元)与行驶路程x(km)(x>3)之间的函数关系式_____.
    20、(4分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.
    21、(4分)如图,正比例函数的图象与反比例函数的图象交于A(2,1),B两点,则不等式的解集是_________.
    22、(4分)如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.
    23、(4分)169的算术平方根是______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,一次函数y=x+1的图象l与x轴、y轴分别交于A、B两点
    (1)l上有一P点,它的纵坐标为2,求点P的坐标;
    (2)求A、B两点间的距离AB.
    25、(10分)如图,在矩形OABC中,点A在x轴上,点C在y轴上,点B的坐标是,将沿直线BD折叠,使得点C落在对角线OB上的点E处,折痕与OC交于点D.
    (1)求直线OB的解析式及线段OE的长.
    (2)求直线BD的解析式及点E的坐标.
    26、(12分)关于的一元二次方程 有两个不等实根,.
    (1)求实数的取值范围;
    (2)若方程两实根,满足,求的值。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.
    【详解】
    A、12+()2=22,符合勾股定理的逆定理,能组成直角三角形,故正确;
    B、()2+()2≠()2,不符合勾股定理的逆定理,不能组成直角三角形,故错误;
    C、52+112≠122,不符合勾股定理的逆定理,不能组成直角三角形,故错误;
    D、92+152≠172,不符合勾股定理的逆定理,不能组成直角三角形,故错误.
    故选:A.
    考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.
    2、D
    【解析】
    一次函数y=kx+b中,k的符号决定了直线的方向,b的符号决定了直线与y轴的交点位置,据此判断即可.
    【详解】
    ∵一次函数y=kx﹣6中,k<0
    ∴直线必经过二、四象限;
    又∵常数项﹣6<0
    ∴直线与y轴交于负半轴
    ∴直线经过第二、三、四象限
    故选D.
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
    3、C
    【解析】
    根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.
    【详解】
    解:A、22+32≠42,故不能构成直角三角形;
    B、42+52≠62,故不能构成直角三角形;
    C、52+122=132,故能构成直角三角形;
    D、52+62≠72,故不能构成直角三角形.
    故选C.
    本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
    4、D
    【解析】
    首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.
    【详解】
    连接BE,
    ∵DE是AB的垂直平分线,
    ∴AE=BE,
    ∴∠ABE=∠A=30°,
    ∴∠CBE=∠ABC-∠ABE=30°,
    在Rt△BCE中,BE=2CE,
    ∴AE=2CE,
    故选D.
    此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
    5、D
    【解析】
    试题分析:解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
    .故选D.
    6、D
    【解析】
    根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.
    【详解】
    根据正方形的轴对称性可得,阴影部分的面积=S正方形,
    ∵正方形ABCD的边长为4cm,
    ∴S阴影=×42=8cm2,
    故选D.
    本题考查了轴对称的性质,正方形的面积,根据图形判断出阴影部分的面积等于正方形的面积的一半是解题的关键.
    7、B
    【解析】
    根据勾股定理列式求出x2,再利用平方根的相反数定义解答.
    【详解】
    由图可知,x2=12+22=5,
    则x1=−,x2=(舍去).
    故选:B.
    考查了实数与数轴,主要是数轴上无理数的作法,需熟练掌握.
    8、B
    【解析】
    根据每组的组中值利用加权平均数的定义列式计算即可得.
    【详解】
    解:由上表可知,这20户家庭该月节约用水量的平均数是
    =2.3(t),
    故选B.
    本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、A.5 B.
    【解析】
    A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
    B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
    【详解】
    A.由尺规作图可得直线MN为线段AB的垂直平分线,
    ∴BF=AF=6,E为AB中点,
    ∵点G为AC中点,
    ∴EG为ΔABC的中位线,
    ∴EG∥BC且EG =BC,
    ∵BF+FC=10,
    ∴EG=5;
    B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
    ∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
    ∵BD=DC, ∴AB+AE=EC.
    ∵AB=AB′, ∴EB′=EC,
    ∴DE为ΔCBB′的中位线.
    ∵∠BAC=60°,
    ∴ΔBAB′为顶角是120°的等腰三角形 ,
    ∴∠B=∠B′=30°,
    ∴AF=1,
    ∴BF=,
    ∴BB′=2,
    ∴ED=.
    故答案为:A. 5;B.
    本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
    10、1
    【解析】
    由AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB,可得GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线,然后根据梯形中位线的性质求解即可求得答案.
    【详解】
    ∵AD∥EF∥GH∥PQ∥BC,AE=EG=GP=PB
    ∴GH是梯形ABCD的中位线,EF是梯形AGHD的中位线,PQ是梯形GBCH的中位线
    ∵AD=2,BC=10



    故答案为:1.
    本题考查了梯形中位线的问题,掌握梯形中位线的性质是解题的关键.
    11、1
    【解析】
    作PE⊥OA于E,根据三角形的外角的性质得到∠ACP=30°,根据直角三角形的性质得到PE=PC=1,根据角平分线的性质解答即可.
    【详解】
    作PE⊥OA于E,
    ∵CP∥OB,
    ∴∠OPC=∠POD,
    ∵P是∠AOB平分线上一点,
    ∴∠POA=∠POD=15°,
    ∴∠ACP=∠OPC+∠POA=30°,
    ∴PE=PC=1,
    ∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,
    ∴PD=PE=1,
    故答案为:1.
    本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    12、上 1
    【解析】
    根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.
    【详解】
    解:函数的图象是由直线向上平移1个单位长度得到的.
    故答案为:上,1.
    本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.
    13、3或1
    【解析】
    分两种情况讨论:①当∠AFE=90°时,易知点F在对角线AC上,设DE=x,则AE、EF均可用x表示,在Rt△AEF中利用勾股定理构造关于x的方程即可;②当∠AEF=90°时,易知F点在BC上,且四边形EFCD是正方形,从而可得DE=CD.
    【详解】
    解:当E点与A点重合时,∠EAF的角度最大,但∠EAF小于90°,
    所以∠EAF不可能为90°,
    分两种情况讨论:
    ①当∠AFE=90°时,如图1所示,
    根据折叠性质可知∠EFC=∠D=90°,
    ∴A、F、C三点共线,即F点在AC上,
    ∵四边形ABCD是矩形,
    ∴AC=,
    ∴AF=AC−CF=AC−CD=10−1=4,
    设DE=x,则EF=x,AE=8−x,
    在Rt△AEF中,利用勾股定理可得AE2=EF2+AF2,
    即(8−x)2=x2+42,
    解得x=3,即DE=3;
    ②当∠AEF=90°时,如图2所示,则∠FED=90°,
    ∵∠D=∠BCD=90°,DE=EF,
    ∴四边形EFCD是正方形,
    ∴DE=CD=1,
    故答案为:3或1.
    本题主要考查了翻折变换,以矩形为背景考查了勾股定理、折叠的对称性,同时考查了分类讨论思想,解决这类问题首先清楚折叠能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列方程求出答案.
    三、解答题(本大题共5个小题,共48分)
    14、(1);;;;(2)120;30;α;(3)两个带阴影的三角形面积相等,证明见解析.
    【解析】
    分析:(1)过D作DE⊥AB于点E,当α=45°时,可求得DE,从而可求得菱形的面积S,同理可求当α=60°时S的值,当α=120°时,过D作DF⊥AB交BA的延长线于点F,则可求得DF,可求得S的值,同理当α=135°时S的值;
    (2)根据表中所计算出的S的值,可得出答案;
    (3)将△ABO沿AB翻折得到菱形AEBO,将△CDO沿CD翻折得到菱形OCFD.利用(2)中的结论,可求得△AOB和△COD的面积,从而可求得结论.
    详解:(1)当α=45°时,如图1,过D作DE⊥AB于点E,
    则DE=AD=,
    ∴S=AB•DE=,
    同理当α=60°时S=,
    当α=120°时,如图2,过D作DF⊥AB,交BA的延长线于点F,
    则∠DAE=60°,
    ∴DF=AD=,
    ∴S=AB•DF=,
    同理当α=150°时,可求得S=,
    故表中依次填写:;;;;
    (2)由(1)可知S(60°)=S(120°),
    S(150°)=S(30°),
    ∴S(180°-α)=S(α)
    故答案为:120;30;α;
    (3)两个带阴影的三角形面积相等.
    证明:如图3将△ABO沿AB翻折得到菱形AMBO,将△CDO沿CD翻折得到菱形OCND.
    ∵∠AOD=∠COB=90°,
    ∴∠COD+∠AOB=180°,
    ∴S△AOB=S菱形AMBO=S(α)
    S△CDO=S菱形OCND=S(180°-α)
    由(2)中结论S(α)=S(180°-α)
    ∴S△AOB=S△CDO.
    点睛:本题为四边形的综合应用,涉及知识点有菱形的性质和面积、解直角三角形及转化思想等.在(1)中求得菱形的高是解题的关键,在(2)中利用好(1)中的结论即可,在(3)中把三角形的面积转化成菱形的面积是解题的关键.本题考查知识点较基础,难度不大.
    15、(1)详见解析;
    (2)四边形AFCE是矩形,证明见解析;
    (3)四边形AFCE是正方形.
    【解析】
    (1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;
    (2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.
    (3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.
    【详解】
    解:(1)∵四边形ABCD是平行四边形,
    ∴OB=OD,AD∥BC,AD=BC,
    ∴∠OBF=∠ODE,
    在△BFO和△DEO中,
    ∵ ,
    ∴△BFO≌△DEO(ASA);
    (2)四边形AFCE是矩形;理由如下:
    ∵△BFO≌△DEO,
    ∴BF=DE,
    ∴CF=AE,
    ∵AD∥BC,
    ∴四边形AFCE是平行四边形;
    又∵AF⊥BC,
    ∴∠AFC=90°,
    ∴四边形AFCE是矩形;
    (3)∵EF平分∠AEC,
    ∴∠AEF=∠CEF,
    ∵AD∥BC,
    ∴∠AEF=∠CFE,
    ∴∠CEF=∠CFE,
    ∴CE=CF,
    ∴四边形AFCE是正方形.
    本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
    16、(1)0;(2)
    【解析】
    (1)根据二次根式的性质、二次根式的混合运算法则计算;
    (2)根据平方差公式计算.
    【详解】
    (1)解:原式

    (2)解:
    本题考查二次根式的化简求值,掌握二次根式的性质、二次根式的混合运算法则、平方差公式是解题关键.
    17、(1)(2)不公平.获胜,否则.
    【解析】游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,即转化为在总情况明确的情况下,判断双方取胜的情况数目是否相等.
    18、(1)3,24;(2)50,28;(3)估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
    【解析】
    (1)由统计图表可直接看出.
    (2)被调查的男生总数=不及格的人数÷它对应的比例,条形统计图中优秀的男生人数:用总数把其他三个等级的人数全部剪掉即可.
    (3)由(1)(2)可知,优秀56%,良好24%,该校八年级男生成绩等级为“良好”和“优秀”的学生人数=300×(良好占比+优秀占比).
    【详解】
    解:(1)3,24
    (2)被调查的男生总数3÷6%=50(人),
    条形统计图中优秀的男生人数:
    (3)该校八年级男生成绩等级为“良好”和“优秀”的学生人数 .
    答:估计该校八年级男生立定跳远测试成绩在良好以上的男生人数为240人.
    本题考查的是表格统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.表格统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、8 y=1x+1.
    【解析】
    (Ⅰ)利用折线图即可得出该城市出租车3千米内收费8元,
    (Ⅱ)利用待定系数法求出一次函数解析式即可.
    【详解】
    (Ⅰ)该城市出租车3千米内收费8元,
    即该地区出租车的起步价是8元;
    (Ⅱ)依题意设y与x的函数关系为y=kx+b,
    ∵x=3时,y=8,x=8时,y=18;
    ∴,
    解得;
    所以所求函数关系式为:y=1x+1(x>3).
    故答案为:8;y=1x+1.
    此题主要考查了一次函数的应用,根据待定系数法求出一次函数的解析式是解题关键.
    20、67.1.
    【解析】
    由四边形ABCD是正方形,可得AB=BC,∠CBD=41°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.
    【详解】
    解:因为四边形ABCD是正方形,
    所以AB=BC,∠CBD=41°,
    根据折叠的性质可得:A′B=AB,
    所以A′B=BC,
    所以∠BA′C=∠BCA′==67.1°.
    故答案为:67.1.
    此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
    21、﹣1<x<0或x>1
    【解析】
    根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
    【详解】
    ∵正比例函数y=kx的图象与反比例函数y的图象交于A(1,1),B两点,∴B(﹣1,﹣1).
    观察函数图象,发现:当﹣1<x<0或x>1时,正比例函数图象在反比例函数图象的上方,∴不等式kx的解集是﹣1<x<0或x>1.
    故答案为:﹣1<x<0或x>1.
    本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.
    22、2
    【解析】
    分析:由于AE即是三角形ABO的中线也是高,得到三角形ABO是等腰三角形,所以AB=AO,再根据矩形的性质即可求出答案.
    详解:∵E为OB中点,且AE⊥BD,
    ∴AB=AO,
    ∵四边形ABCD为矩形,∴CD=AB=AO=BO=BD=2.
    点睛:本题考查了等腰三角形的判定和矩形的性质,解题的难点在于判定三角形ABO是等腰三角形.
    23、1
    【解析】
    根据算术平方根的定义解答即可.
    【详解】
    解:==1.
    故答案为:1.
    此题主要考查了算术平方根的定义:如果一个数的平方等于A,那么这个数就叫做A的平方根,其中非负的平方根叫做这个数的算术平方根.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(,1);(1)1.
    【解析】
    (1)把y=1代入函数解析式,求出x即可;
    (1)求出A、B的坐标,再根据勾股定理求出即可.
    【详解】
    (1)把y=1代入y=x+1得:1=x+1,
    解得:x=,
    所以点P的坐标是(,1);
    (1)y=x+1,
    当x=0时,y=1,
    当y=0时,0=x+1,
    解得:x=-,
    即A(-,0),B(0,1),
    即OA=,OB=1,
    所以A、B两点间的距离AB==1.
    本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能求出A、B的坐标是解(1)的关键.
    25、(1)直线OB的解析式为,;(2)直线BD的解析式为,.
    【解析】
    (1)先利用待定系数法求直线OB的解析式,再利用两点间的距离公式计算出OB,然后根据折叠的性质得到BE=BC=6,从而可计算出OE=OB-BE=4;
    (2)设D(0,t),则OD=t,CD=8-t,根据折叠的性质得到DE=DC=8-t,∠DEB=∠DCB=90°,根据勾股定理得(8-t)2+42=t2,求出t得到D(0,5),于是可利用待定系数法求出直线BD的解析式;设E(x,),利用OE=4得到x2+()2=42,然后解方程求出x即可得到E点坐标.
    【详解】
    解:(1)设直线OB的解析式为,
    将点代入中,得,
    ∴,
    ∴直线OB的解析式为.
    ∵四边形OABC是矩形.且,
    ∴,,
    ∴,.
    根据勾股定理得,
    由折叠知,.

    (2)设D(0,t)

    ∴,
    由折叠知,,,
    在中,,
    根据勾股定理得,
    ∴,
    ∴,
    ∴,.
    设直线BD的解析式为.
    ∵,
    ∴,
    ∴,
    ∴直线BD的解析式为.
    由(1)知,直线OB的解析式为.
    设点,
    根据的面积得,
    ∴,
    ∴.
    本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了矩形的性质和折叠的性质.
    26、(1);(2).
    【解析】
    (1)根据∆>0列式求解即可;
    (2)先求出x1+x2与x1·x2的值,然后代入求解即可.
    【详解】
    (1)原方程有两个不相等的实数根,

    解得:.
    (2)由根与系数的关系得,.


    解得: 或,
    又,

    本题考查了一元二次方程根的判别式,以及一元二次方程根与系数的关系,熟练掌握各知识点是解答本题的关键.
    题号





    总分
    得分
    批阅人
    节约用水量x(t)
    0.5≤x<1.5
    1.5≤x<2.5
    2.5≤x<3.5
    3.5≤x<4.5
    户数
    6
    4
    8
    2
    30°
    45°
    60°
    90°
    120°
    135°
    150°
    S
    1

    相关试卷

    2024年湖北省重点中学九上数学开学经典模拟试题【含答案】:

    这是一份2024年湖北省重点中学九上数学开学经典模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年甘南市重点中学九上数学开学综合测试试题【含答案】:

    这是一份2024年甘南市重点中学九上数学开学综合测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安康市重点中学九上数学开学复习检测模拟试题【含答案】:

    这是一份2024年安康市重点中学九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map