终身会员
搜索
    上传资料 赚现金

    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】

    立即下载
    加入资料篮
    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】第1页
    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】第2页
    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】

    展开

    这是一份2024年拉萨市重点中学九年级数学第一学期开学监测试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若,则下列不等式不成立的是( ).
    A.B.C.D.
    2、(4分)把直线向上平移个单位后,与直线的交点在第二象限,则的取值范围是( )
    A.B.C.D.
    3、(4分)在一次数学测验中,一学习小组七人的成绩如表所示:
    则这七人成绩的中位数是( )
    A.22B.89C.92D.96
    4、(4分)下列命题中,假命题的是( )
    A.矩形的对角线相等
    B.平行四边形的对角线互相平分
    C.对角线互相垂直平分的四边形是菱形
    D.对角线相等且互相垂直的四边形是正方形
    5、(4分)一个多边形的内角和是外角和的2倍,这个多边形是( )
    A.四边形B.五边形C.六边形D.八边形
    6、(4分)如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:
    则关于甲、乙两人的作法,下列判断正确的为( )
    A.仅甲正确B.仅乙正确C.甲、乙均正确D.甲、乙均错误
    7、(4分)下列各曲线中能表示y是x的函数的是( )
    A.B.C.D.
    8、(4分)如图,在三角形中,,平分交于点,且,,则点到的距离为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,于点E,于点F,,求证:.
    试将下面的证明过程补充完整填空:
    证明:,已知
    ______
    同位角相等,两直线平行,
    两直线平行,同旁内角互补,
    又已知,
    ______,同角的补角相等
    ______内错角相等,两直线平行,
    ______
    10、(4分)使函数 有意义的 的取值范围是________.
    11、(4分)方程x4﹣16=0的根是_____.
    12、(4分)如图,在平行四边形ABCD中,EF是△BCD的中位线,且EF=4,则AD=___.
    13、(4分)已知一次函数与的图象交于点P,则点P的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
    (1)求证:四边形CODE是矩形;
    (2)若AB=5,AC=6,求四边形CODE的周长.
    15、(8分)如图,在四边形中,平分,,是的中点,,过作于,并延长至点,使.
    (1)求证:;
    (2)若,求证:四边形是菱形.
    16、(8分)计算能力是数学的基本能力,为了进一步了解学生的计算情况,初2020级数学老师们对某次考试中第19题计算题的得分情况进行了调查,现分别从A、B两班随机各抽取10名学生的成绩如下:
    A班10名学生的成绩绘成了条形统计图,如下图,
    B班10名学生的成绩(单位:分)分别为:9,8,9,10,9,7,9,8,10,8
    经过老师对所抽取学生成绩的整理与分析,得到了如下表数据:
    根据以上信息,解答下列问题.
    (1)补全条形统计图;
    (2)直接写出表中a,b,c的值:a= ,b= ,c= ;
    (3)根据以上数据,你认为A、B两个班哪个班计算题掌握得更好?请说明理由(写出其中两条即可): .
    (4)若9分及9分以上为优秀,若A班共55人,则A班计算题优秀的大约有多少人?
    17、(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
    请你根据图中提供的信息,回答下列问题:
    (1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.
    (2)求出平均睡眠时间为8小时的人数,并补全条形统计图.
    (3)求出这部分学生的平均睡眠时间的众数和平均数.
    (4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.
    18、(10分)如图,的顶点坐标分别为,.
    (1)画出关于点的中心对称图形;
    (2)画出绕原点逆时针旋转的,直接写出点的坐标
    (3)若内一点绕原点逆时针旋转的上对应点为,请写出的坐标.(用含,的式子表示).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
    20、(4分)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
    21、(4分)如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.
    22、(4分)化简的结果为______.
    23、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…依此类推,若正方形①的边长为64m,则正方形⑨的边长为________cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知反比例函数y1=的图象与一次函数:y2=ax+b的图象相交于点A(1,4)、B(m,﹣2)
    (1)求出反比例函数和一次函数的关系式;
    (2)观察图象,直按写出使得y1<y2成立的自变量x的取值范围;
    (3)如果点C是x轴上的点,且△ABC的面积面积为6,求点C的坐标.
    25、(10分)如图,在4×3正方形网格中,每个小正方形的边长都是1.
    (1)分别求出线段AB,CD的长度;
    (2)在图中画线段EF,使得EF的长为,以AB,CD,EF三条线段能否构成直角三角形,并说明理由.
    26、(12分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;
    B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;
    C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;
    D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.
    故选D.
    考点:不等式的性质.
    2、A
    【解析】
    根据平移特征:向上平移个单位后可得:,再根据与直线的交点,组成方程组,解关于x,y的方程,得到x,y关于m的代数式,二象项的点横坐标小于1.纵坐标大于1,组成不等式组,即可得到答案.
    【详解】
    解:直线向上平移个单位后可得:,
    联立两直线解析式得:,
    解得:,
    即交点坐标为,,
    交点在第二象限,

    解得:.
    故选:.
    本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于1、纵坐标大于1.
    3、D
    【解析】
    根据中位数的定义求解即可.
    【详解】
    ∵从小到大排列后,成绩排在第四位的是96分,
    ∴中位数是96.
    故选D.
    此题主要考查了中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    4、D
    【解析】
    根据平行四边形,矩形,菱形和正方形的对角线进行判断即可.
    【详解】
    A、矩形的对角线相等,是真命题;
    B、平行四边形的对角线互相平分,是真命题;
    C、对角线互相垂直平分的四边形是菱形,是真命题;
    D、对角线平分、相等且互相垂直的四边形是正方形,是假命题;
    故选:D.
    本题考查了从对角线来判断特殊四边形的方法:对角线互相平分的四边形为平行四边形;对角线互相垂直平分的四边形为菱形;对角线互相平分且相等的四边形为矩形;对角线互相垂直平分且相等的四边形为正方形.也考查了真命题与假命题的概念.
    5、C
    【解析】
    此题可以利用多边形的外角和和内角和定理求解.
    【详解】
    解:设所求多边形边数为n,由题意得
    (n﹣2)•180°=310°×2
    解得n=1.
    则这个多边形是六边形.
    故选C.
    本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于310°,n边形的内角和为(n﹣2)•180°.
    6、C
    【解析】
    试题解析:根据甲的作法作出图形,如下图所示.
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,

    ∵EF是AC的垂直平分线,

    在和中,

    ∴≌,

    又∵AE∥CF,
    ∴四边形AECF是平行四边形.

    ∴四边形AECF是菱形.
    故甲的作法正确.
    根据乙的作法作出图形,如下图所示.
    ∵AD∥BC,
    ∴∠1=∠2,∠6=∠7.
    ∵BF平分,AE平分
    ∴∠2=∠3,∠5=∠6,
    ∴∠1=∠3,∠5=∠7,


    ∵AF∥BE,且
    ∴四边形ABEF是平行四边形.

    ∴平行四边形ABEF是菱形.
    故乙的作法正确.
    故选C.
    点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.
    对角线互相垂直的平行四边形是菱形.
    四条边相等的平行四边形是菱形.
    7、B
    【解析】
    因为对于函数中自变量x的取值,y有唯一一个值与之对应,故选B.
    8、C
    【解析】
    如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.
    【详解】
    如图,过点D作DE⊥AB于E,

    ∵BD:DC=1:1,BC=6,
    ∴DC=×6=1,
    ∵AD平分∠BAC,∠C=90∘,
    ∴DE=DC=1.
    故选:C.
    本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、垂直的定义;;BC;两直线平行,同位角相等
    【解析】
    根据垂线的定义结合平行线的判定定理可得出,由平行线的性质可得出,结合可得出,从而得出。根据平行线的性质即可得出,此题得解.
    【详解】
    证明:,
    (垂直的定义),
    (同位角相等,两直线平行),
    (两直线平行,同旁内角互补),
    又,
    (同角的补角相等),
    (内错角相等,两直线平行),
    (两直线平行,同位角相等).
    故答案为:垂直的定义;;;两直线平行,同位角相等.
    本题考查了平行线的判定与性质以及垂线的定义,熟练掌握平行线的判定与性质定理是解题的关键.
    10、 且
    【解析】
    根据被开方数是非负数且分母不能为零,可得答案.
    【详解】
    解:由题意,得

    解得x>-3且.
    故答案为:x>-3且.
    本题考查函数自变量的取值范围,利用被开方数是非负数且分母不能为零得出不等式是解题关键.
    11、±1
    【解析】
    根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.
    【详解】
    ∵x4﹣16=0,
    ∴(x1+4)(x+1)(x﹣1)=0,
    ∴x=±1,
    ∴方程x4﹣16=0的根是x=±1,
    故答案为±1.
    该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.
    12、1.
    【解析】
    利用三角形中位线定理求出BC,再利用平行四边形的对边相等即可解决问题.
    【详解】
    ∵EF是△DBC的中位线,
    ∴BC=2EF=1,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=1,
    故答案为1.
    此题考查平行四边形的性质和三角形中位线定理,解题关键在于利用中位线的性质计算出BC的长度
    13、 (3,0)
    【解析】
    解方程组,可得交点坐标.
    【详解】
    解方程组



    所以,P(3,0)
    故答案为(3,0)
    本题考核知识点:求函数图象的交点. 解题关键点:解方程组求交点坐标.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)证明见解析;(2)14.
    【解析】
    试题分析:(1)先证明四边形CODE是平行四边形,再利用菱形的性质得到直角,证明四边形CODE是矩形.(2)由勾股定理可知OD长,OC是AC一半,所以可知矩形的周长.
    试题解析:
    (1)∵ CE∥BD,DE∥AC,
    ∴ 四边形CODE是平行四边形,
    ∵ 四边形ABCD是菱形,∴ AC⊥BD,
    ∴ ∠DOC=90°,∴ □ CODE是矩形;
    (2)在菱形ABCD中,OC=AC=×6=3,CD=AB=5,
    在Rt△COD中,OD=,
    ∴ 四边形CODE的周长即矩形CODE的周长为:2(OD+OC)=2×(4+3)=14.
    15、(1)见详解;(2)见详解
    【解析】
    (1)欲证明AC2=CD•BC,只需推知△ACD∽△BCA即可;
    (2)利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.
    【详解】
    证明:(1)∵AC平分∠BCD,
    ∴∠DCA=∠ACB.
    又∵AC⊥AB,AD⊥AE,
    ∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,
    ∴∠DAC=∠EAB.
    又∵E是BC的中点,
    ∴AE=BE,
    ∴∠EAB=∠ABC,
    ∴∠DAC=∠ABC,
    ∴△ACD∽△BCA,
    ∴,
    ∴AC2=CD•BC;
    (2)证明:∵EF⊥AB,AC⊥AB,
    ∴EF∥AC,
    又∵∠B=30°,
    ∴AC=BC=EB=EC.
    又EF=EB,
    ∴EF=AC,
    即AF=FE=EC=CA,
    ∴四边形AFEC是菱形.

    本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30°角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题.
    16、(1)见解析;(2)8.7,8, 9;(3)B班计算题掌握的更好,理由见详解;(4)A班计算题优秀的大约有22人.
    【解析】
    (1)先根据A班的总人数求出成绩为 10分的人数,然后即可补全条形统计图 ;
    (2)利用平均数的公式和中位数,众数的概念求解即可;
    (3)通过对比两班的平均数,中位数,众数,极差和方差即可得出答案;
    (4)用总人数55乘以优秀人数所占的百分比即可得出答案.
    【详解】
    (1)成绩为10分的人数=10﹣1﹣2﹣3﹣1=3,
    补全条形统计图如图所示,
    (2)a=(9+8+9+10+9+7+9+8+10+8)=8.7;
    中位数是将A班的10个成绩按照从小到大的顺序排列之后处于中间位置的数,此时第5个数和第6个数都是8,所以 ;
    众数为B班成绩中出现次数最多的数,可以看出9出现了4次,次数最多,所以c=9;
    (3)B班学生计算题掌握得更好,理由:
    B班的平均分高于A班,B班的中位数高于A班;
    (4)55×=22人,
    答:A班计算题优秀的大约有22人.
    本题主要考查数据的分析与整理,掌握平均数,中位数,众数的求法是解题的关键.
    17、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.
    【解析】
    (1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;
    (2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;
    (3)根据众数和平均数的定义计算即可;
    (4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.
    【详解】
    (1) ,
    所抽查的学生人数为(人);
    (2)平均睡眠时间为8小时的人数为(人),
    平均睡眠时间为7小时的人数为(人),
    条形统计图如下:
    (3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为 ;
    (4) (人)
    本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.
    18、(1)见解析;(2),见解析;(3).
    【解析】
    (1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到点C2的坐标;
    (3)利用(2)中对应点的规律写出Q的坐标.
    【详解】
    解:(1)如图,为所作;
    (2)如图,为所作,点的坐标为;
    (3)若内一点绕原点逆时针旋转的对应点为,则的坐标为.
    故答案为:(1)见解析;(2),见解析;(3).
    本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、51%; 184°.
    【解析】
    先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
    【详解】
    解:1-28%-21%=51%
    360°×51%=183.6°184°
    故答案为:51%;184°
    考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
    20、(-2,-2)
    【解析】
    先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.
    【详解】
    “卒”的坐标为(﹣2,﹣2),
    故答案是:(﹣2,﹣2).
    考查了坐标确定位置,关键是正确确定原点位置.
    21、1
    【解析】
    利用直角三角形30度角的性质,可得AC=2AD=1.
    【详解】
    解:在矩形ABCD中,OC=OD,
    ∴∠OCD=∠ODC,
    ∵∠AOD=60°,
    ∴∠OCD=∠AOD=×60°=30°,
    又∵∠ADC=90°,
    ∴AC=2AD=2×2=1.
    故答案为1.
    本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键
    22、
    【解析】
    根据二次根式的性质进行化简.由即可得出答案.
    【详解】
    解:,
    故答案为:.
    本题考查的是二次根式的化简,掌握二次根式的性质: 是解题的关键.
    23、4
    【解析】
    第一个正方形的边长为64cm,则第二个正方形的边长为64×cm,第三个正方形的边长为64×()2cm,依此类推,通过找规律求解.
    【详解】
    根据题意:第一个正方形的边长为64cm;
    第二个正方形的边长为:64×=32cm;
    第三个正方形的边长为:64×()2cm,

    此后,每一个正方形的边长是上一个正方形的边长的 ,
    所以第9个正方形的边长为64×()9-1=4cm,
    故答案为4
    本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)反比例函数的解析式为y1=,一次函数的解析式为 y1=1x+1;(1)﹣1<x<0或x>1;(3)C的坐标(1,0)或(﹣3,0).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (1)根据一次函数图象在上方的部分是不等式的解,可得答案;
    (3)根据面积的和差,可得答案.
    【详解】
    (1)∵函数y1=的图象过点A(1,4),即4=,
    ∴k=4,即y1=,
    又∵点B(m,﹣1)在y1=上,
    ∴m=﹣1,
    ∴B(﹣1,﹣1),
    又∵一次函数y1=ax+b过A、B两点,
    即 ,
    解之得.
    ∴y1=1x+1.
    反比例函数的解析式为y1=,
    一次函数的解析式为 y1=1x+1;
    (1)要使y1<y1,即函数y1的图象总在函数y1的图象下方,
    ∴﹣1<x<0或x>1;
    (3)如图,直线AB与x轴交点E的坐标(﹣1,0),
    ∴S△ABC=S△AEC+S△BEC=EC×4+EC×1=2.
    ∴EC=1,
    -1+1=1,-1-1=-3,
    ∴C的坐标(1,0)或(﹣3,0).
    本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,函数与不等式的关系.
    25、;.(2)以AB、CD、EF三条线段可以组成直角三角形
    【解析】
    (1)利用勾股定理求出AB、CD的长即可;
    (2)根据勾股定理的逆定理,即可作出判断.
    【详解】
    (1)AB==;CD==2.
    (2)如图,EF==,
    ∵CD2+EF2=8+5=13,AB2=13,∴CD2+EF2=AB2,∴以AB、CD、EF三条线段可以组成直角三角形.
    本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
    26、见解析.
    【解析】
    先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS证明△ABC≌△CDA,则有∠3=∠4,进一步得出AD∥BC,最后利用两组对边分别平行的四边形为平行四边形即可证明.
    【详解】
    已知:如图,在四边形ABCD中,AB∥CD,AB=CD.
    求证:四边形ABCD是平行四边形.
    证明:连接AC,如图所示:
    ∵AB∥CD,
    ∴∠1=∠2,
    在△ABC和△CDA中,

    ∴△ABC≌△CDA(SAS),
    ∴∠3=∠4,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
    本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.
    题号





    总分
    得分
    成绩(分)
    78
    89
    96
    100
    人数
    1
    2
    3
    1
    A班
    B班
    平均数
    8.3
    a
    中位数
    b
    9
    众数
    8或10
    c
    极差
    4
    3
    方差
    1.81
    0.81

    相关试卷

    2024年淮南市重点中学九年级数学第一学期开学预测试题【含答案】:

    这是一份2024年淮南市重点中学九年级数学第一学期开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】:

    这是一份2024年昌都市九年级数学第一学期开学监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年山东省重点中学九年级数学第一学期开学学业质量监测试题【含答案】:

    这是一份2024-2025学年山东省重点中学九年级数学第一学期开学学业质量监测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map