2024年辽宁省昌图县九上数学开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )
A.平行四边形B.对角线相等的四边形
C.矩形D.对角线互相垂直的四边
2、(4分)如图①,,点在线段上,且满足.如图②,以图①中的,长为边建构矩形,以长为边建构正方形,则矩形的面积为( )
A.B.C.D.
3、(4分)如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2)周长为p(m),一边长为a(m),那么S、p、a中,常量是( )
A.aB.pC.SD.p,a
4、(4分)如图,直线与的交点的横坐标为-2,则关于的不等式的取值范围( )
A.x>-2B.x<-2C.-3
A.B.
C.D.
6、(4分)下列命题正确的是().
A.任何事件发生的概率为1
B.随机事件发生的概率可以是任意实数
C.可能性很小的事件在一次实验中有可能发生
D.不可能事件在一次实验中也可能发生
7、(4分)要使式子有意义,则x的取值范围是( )
A.x>0B.x≥﹣3C.x≥3D.x≤3
8、(4分)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①②B.②③C.①③D.②④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.
10、(4分)如图,已知, AD平分于点E, ,则BC= ___cm。
11、(4分)化简的结果为___________
12、(4分)如图,OC平分∠AOB,P在OC上,PD⊥OA于D,PE⊥OB于E.若PD=3cm,则PE=_____cm.
13、(4分)如图,已知直线:与直线:相交于点,直线、分别交轴于、两点,矩形的顶点、分别在、上,顶点、都在轴上,且点与点重合,那么 __________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
15、(8分)如果一组数据﹣1,0,2,3,x的极差为6
(1)求x的值;
(2)求这组数据的平均数.
16、(8分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.
(1)请根据乙校的数据补全条形统计图:
(2)两组样本数据的平均数.中位数众数如下表所示,写出、的值:
(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好些,请为他们各写出条可以使用的理由;甲校:____.乙校:________.
(4)综合来看,可以推断出________校学生的数学学业水平更好些,理由为________.
17、(10分)计算:
(1)(-)2-+
(2)-×.
18、(10分)解下列方程组和不等式组.(1);(2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知点在直线上,则=__________.
20、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E. F分别是AO、AD的中点,若AC=8,则EF=___.
21、(4分)已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.
22、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
23、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
25、(10分)边长为,的矩形发生形变后成为边长为,的平行四边形,如图1,平行四边形中,,边上的高为,我们把与的比值叫做这个平行四边形的“形变比”.
(1)若形变后是菱形(如图2),则形变前是什么图形?
(2)若图2中菱形的“形变比”为,求菱形形变前后的面积之比;
(3)当边长为3,4的矩形变后成为一个内角是30°的平行四边形时,求这个平行四边形的“形变比”.
26、(12分)化简求值:已知,求的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
试题分析:根据三角形中位线的性质及菱形的性质,可证四边形的对角线相等.
解:如图所示,
∵四边形EFGH是菱形,
∴EH=FG=EF=HG=BD=AC,
故AC=BD.
即原四边形的对角线相等.
故选B.
点睛:本题主要考查中点四边形.画出图形,并利用三角形中位线与菱形的性质是解题的关键.
2、C
【解析】
利用黄金比进行计算即可.
【详解】
解:由得,
AC=AB=×2=-1,BC=AB=×2=3-,
因为四边形CBDE为正方形,所以EC=BC,
AE=AC-CE=AC-BC=(-1)-(3-)=2-4,
矩形AEDF的面积:AE•DE=(2-4)×(3-)=10-1.
故选C.
本题考查黄金分割的意义,熟练利用黄金比计算是解题的关键.
3、B
【解析】
根据常量的定义判断即可,常量就是不变的量,不随自变量的变化而变化.
【详解】
解:根据题意长方形的周长p=60m,
所以常量是p,
故选:B.
本题主要考查常量的定义,是函数的基本知识点,应当熟练掌握.
4、C
【解析】
解:∵直线与的交点的横坐标为﹣2,
∴关于x的不等式的解集为x<﹣2,
∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x>﹣3,
∴>0的解集是﹣3<x<﹣2,
故选C.
本题考查一次函数与一元一次不等式.
5、A
【解析】
根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.
【详解】
是把一个多项式化为几个整式的积的形式,所以A正确;
中含有分式,所以B错误;
不是把一个多项式化为几个整式的积的形式,所以C错误;
不是把一个多项式化为几个整式的积的形式,所以D错误.
本题考查分解因式的定义,解题的关键是掌握分解因式的定义.
6、C
【解析】
根据随机事件、不可能事件的定义和概率的性质判断各选项即可.
【详解】
A中,只有必然事件概率才是1,错误;
B中,随机事件的概率p取值范围为:0<p<1,错误;
C中,可能性很小的事件,是有可能发生的,正确;
D中,不可能事件一定不发生,错误
故选:C
本题考查事件的可能性,注意,任何事件的概率P一定在0至1之间.
7、D
【解析】
根据被开方数是非负数,可得答案.
【详解】
解:由题意,得
3﹣x≥0,
解得x≤3,
故选:D.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
8、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、k>2
【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.
【详解】
根据题意可得:k-2>0,解得:k>2.
考点:一次函数的性质;一次函数的定义
10、1
【解析】
过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,然后求出CD、BD的长度,即可得解.
【详解】
解:如图,过点D作DE⊥AB于E,
∵点D到AB的距离等于5cm,
∴DE=5cm,
∵AD平分∠BAC,∠C=90°,
∴DE=CD=5cm,
∵BD=2CD,
∴BD=2×5=10cm,
∴BC=CD+BD=5+10=1cm.
故答案为:1.
本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.
11、
【解析】
根据二次根式的性质即可化简.
【详解】
依题意可知m<0,
∴=
此题主要考查二次根式的化简,解题的关键是熟知二次根式的性质.
12、3
【解析】
根据角平分线上的点到角的两边的距离相等求解即可.
【详解】
解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,
∴PE=PD=3cm.
故答案为;3
本题主要考查了角平分线的定义,角平分线上的点到角的两边的距离相等,熟记性质是解题的关键.
13、2:5
【解析】
把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=2易求D点坐标.又已知yE=yD=2可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.
【详解】
解:由 x+=0,得x=-1.
∴A点坐标为(-1,0),
由-2x+16=0,得x=2.
∴B点坐标为(2,0),
∴AB=2-(-1)=3.
由 ,解得,
∴C点的坐标为(5,6),
∴S△ABC=AB•6=×3×6=4.
∵点D在l1上且xD=xB=2,
∴yD=×2+=2,
∴D点坐标为(2,2),
又∵点E在l2上且yE=yD=2,
∴-2xE+16=2,
∴xE=1,
∴E点坐标为(1,2),
∴DE=2-1=1,EF=2.
∴矩形面积为:1×2=32,
∴S矩形DEFG:S△ABC=32:4=2:5.
故答案为:2:5.
此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)1或9.
【解析】
试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
试题解析:
(1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
解得,
所以一次函数的表达式为y=x+5.
(2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
解得m=1或9.
点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
15、(1)x=1或x=-3;(2)或
【解析】
(1)根据极差的定义求解.分两种情况:x为最大值或最小值.(2)根据平均数的公式求解即可。
【详解】
解:(1)∵3+1=4<6,∴x为最大值或最小值.
当x为最大值时,有x+1=6,解得x=1.
当x为最小值时,3﹣x=6,解得x=﹣3;
(2)当x为1时,平均数为 .
当x为﹣3时,平均数为 .
本题考查了极差的定义和算术平均数,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.
16、(1)见解析;(2);;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一.
【解析】
(1)根据表格中的数据可以得到乙校70-79的和60-69的各有多少人,从而可以将条形统计图补充完整;
(2)根据表格中的数据将乙校的数据按照从小到大排列,即可得到这组数据的中位数和众数;
(3)答案不唯一,理由需包含数据提供的信息;
(4)答案不唯一,理由需支撑推断结论.
【详解】
解:(1)由表格可得,
乙校,70-79的有5人,60-69的有2人,
补全条形统计图,如下图
各分数段条形统计图
(2)乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94,
∴这组数据的中位数是:,;
(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;
乙校:我们学校的众数高于甲校,所以我们学校的成绩好;
故答案为我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;
(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好
本题考查条形统计图、中位数、众数、平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)1.(2).
【解析】
1)先根据二次根式的性质化简,然后合并即可;
(2)先根据二次根式的乘除法则运算,然后合并即可.
【详解】
解:(1)原式=6-5+3=1;
(2)原式=
=
=.
考点:二次根式的混合运算.
18、(1);(2).
【解析】
(1)用加减消元法或代入消元法先消去一个未知数,化二元为一元,求解即可;(2)首先求出每个不等式的解集,然后找出它们的公共部分,该公共部分就是不等式组的解集.
【详解】
解:(1)
①-②×2,得,.
把代入②,得,.
∴原方程组的解为.
(2)
由①,得,.
由②,得,.
∴原不等式组的解集为.
本题考查的是解二元一次方程组和解一元一次不等式组,熟知加减消元法和代入消元法是解(1)题的关键,熟知不等式的基本性质是解(2)题的关键;对于求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小是空集.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
把代入解析式,解方程即可.
【详解】
将点代入直线的解析式,得4=3a+2,
∴.a=
故本题应填写:.
本题考查了点在函数图像上,掌握函数解析式的基本性质是解题的关键.
20、2
【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.
【详解】
∵四边形ABCD为矩形,
∴BD=AC=8,
又∵矩形对角线的交点等分对角线,
∴OD=4,
又∵在△AOD中,EF为△AOD的中位线,
∴EF=2.
故答案为2.
此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=8
21、
【解析】
如图,在Rt△ADF和Rt△AEF中,
AD=AE,AF=AF,
∴≌(),
故,
因为是正方形的对角线,
故,
故∠FAD=22.5°,
故答案为22.5.
22、
【解析】
根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
【详解】
解:∵正方形的对角线长为2,
设正方形的边长为x,
∴2x²=(2)²
解得:x=2
∴正方形的边长为:2
故答案为2.
本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
23、1
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
180°-144°=36°,
360°÷36°=1,
∴这个多边形的边数是1,
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
二、解答题(本大题共3个小题,共30分)
24、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.
【详解】
∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等).
故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.
25、(1)正方形;(2);(3)或.
【解析】
(1)根据形变后的图形为菱形,即可推断.
(2)由题意得形变比,再分别用代数式表示形变前和形变后的面积,计算比值即可.
(3)分以AB为底边和以AD为底边两种情况讨论,可求这个平行四边形的“形变比”.
【详解】
(1)∵形变后是菱形
∴AB=BC=CD=DA
则形变前的四条边也相等
∵四条边相等的矩形是正方形
∴形变前的图形是正方形
(2)根据题意知道:
S形变前=a×b=a2
S形变后=a×h=a××a=a2
∴
(3)当形变后四边形一个内角为30°时
此时应分两种情况讨论:
第一种:以AB为底边4×=2
∴这个四边形的形变比为:
第二种:以AD为底边
则
∴这个四边形的形变比为:.
本题考查了正方形、菱形的性质,正方形的面积和菱形的面积的求法,还利用了同底等高的三角形的面积相等,同时还训练了学生的理解能力,以及对新定义的理解和运用.
26、;14
【解析】
原式括号中利用完全平方公式,单项式乘以多项式法则计算,再利用多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.
【详解】
=
=
=
∴原式
此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
众数
甲校
乙校
2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年江苏省高邮市九上数学开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024年广西省玉林市数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024年甘肃省陇南市九上数学开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。