搜索
    上传资料 赚现金
    英语朗读宝

    2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】

    2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】第1页
    2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】第2页
    2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】

    展开

    这是一份2024年辽宁省灯塔市九上数学开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列选项中,不能判定四边形ABCD是平行四边形的是
    A.,B.,
    C.,D.,
    2、(4分)将正方形ABCD与等腰直角三角形EFG如图摆放,若点M、N刚好是AD的三等分点,下列结论正确的是( )
    ①△AMH≌△NME;②;③GH⊥EF;④S△EMN:S△EFG=1:16
    A.①②③④B.①②③C.①③④D.①②④
    3、(4分)菱形与矩形都具有的性质是( ).
    A.对角相等B.四边相等C.对角线互相垂直D.四角相等
    4、(4分)下列运算正确的是( )
    A.B.C.D.
    5、(4分)下列图标中,是中心对称图形的是( )
    A.B.
    C.D.
    6、(4分)关于x的方程mx2+(2m+1)x+m = 0,有实数根,则m的取值范围是( )
    A.m>且m≠0B.m≥C.m≥且m≠0D.以上答案都不对
    7、(4分)如图,四边形是平行四边形,要使它变成菱形,需要添加的条件是( )
    A.AC=BDB.AD=BCC.AB=BCD.AB=CD
    8、(4分)在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的( )
    A.三边中垂线的交点B.三边中线的交点
    C.三条角平分线的交点D.三边上高的交点
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.
    10、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)
    11、(4分)1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
    12、(4分)如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.
    13、(4分)函数中,自变量x的取值范围是___________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)近年来,萧山区大力发展旅游业,跨湖桥遗址、湘湖二期三期、宋城千古情、河上民俗、大美进化……这些名词,相信同学们都耳熟能详了,因此近年来,我区的年游客接待量呈逐年稳步上升,2015年接待1800万人次,2015——2017年这三年累计接待游客高达5958万人次.
    (1)求萧山区2015——2017年年游客接待量的年平均增长率.
    (2)若继续呈该趋势增长,请预测2018年年游客接待量(近似到万人次).
    15、(8分)已知是的函数,自变量的取值范围为,下表是与的几组对应值
    小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
    (1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
    (2)根据画出的函数图象填空.
    ①该函数图象与轴的交点坐标为_____.
    ②直接写出该函数的一条性质.
    16、(8分)矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF,∠ECA=∠FCA.
    (1)求证:四边形AFCE是菱形;
    (2)若AB=8,BC=4,求菱形AFCE的面积.
    17、(10分)事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:
    (1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;
    (2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
    18、(10分)计算:(1) (2)
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在等边中,cm,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动,如果点、同时出发,当以点、、、为顶点的四边形是平行四边形时,运动时间为____.
    20、(4分)如图,已知,则等于____________度.
    21、(4分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接 EF.若EF=3,则CD的长为_____________.
    22、(4分)从A,B两题中任选一题作答:
    A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
    B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
    23、(4分)如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)证明“平行四边形的两组对边分别相等”
    25、(10分)为了准备“欢乐颂——创意市场”,初2020级某同学到批发市场购买了、两种原材料,的单价为每件6元,的单价为每件3元.该同学的创意作品需要材料的数量是材料数量的2倍,同时,为了减少成本,该同学购买原材料的总费用不超过480元.
    (1)该同学最多购买多少件材料;
    (2)在该同学购买材料最多的前提下,用所购买的,两种材料全部制作作品,在制作中其他费用共花了520元,活动当天,该同学在成本价(购买材料费用+其他费用)的基础上整体提高标价,但无人问津,于是该同学在标价的基础上降低出售,最终,在活动结束时作品卖完,这样,该同学在本次活动中赚了,求的值.
    26、(12分)如图,四边形ABCD中,AB=AD,CB=CD,AB ∥ CD.
    (1)求证:四边形ABCD是菱形.
    (2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件).
    (3)对角线AC和BD交于点O,∠ ADC =120°,AC=8, P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据平行四边形的判定方法逐项进行判断即可.
    【详解】
    A、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;
    B、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意;
    C、由,不能判断四边形ABCD是平行四边形,有可能是等腰梯形;故本选项符合题意;
    D、由,可以判断四边形ABCD是平行四边形;故本选项不符合题意,
    故选C.
    本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
    2、A
    【解析】
    利用三角形全等和根据题目设未知数,列等式解答即可.
    【详解】
    解:设AM=x,
    ∵点M、N刚好是AD的三等分点,
    ∴AM=MN=ND=x,
    则AD=AB=BC=3x,
    ∵△EFG是等腰直角三角形,
    ∴∠E=∠F=45°,∠EGF=90°,
    ∵四边形ABCD是正方形,
    ∴∠A=∠ABC=∠BGN=∠ABF=90°,
    ∴四边形ABGN是矩形,
    ∴∠AHM=∠BHF=∠AMH=∠NME=45°,
    ∴△AMH≌△NMH(ASA),故①正确;
    ∵∠AHM=∠AMH=45°,
    ∴AH=AM=x,
    则BH=AB﹣AH=2x,
    又Rt△BHF中∠F=45°,
    ∴BF=BH=2x,=,故②正确;
    ∵四边形ABGN是矩形,
    ∴BG=AN=AM+MN=2x,
    ∴BF=BG=2x,
    ∵AB⊥FG,
    ∴△HFG是等腰三角形,
    ∴∠FHB=∠GHB=45°,
    ∴∠FHG=90°,即GH⊥EF,故③正确;
    ∵∠EGF=90°、∠F=45°,
    ∴EG=FG=BF+BG=4x,
    则S△EFG=•EG•FG=•4x•4x=8x2,
    又S△EMN=•EN•MN=•x•x=x2,
    ∴S△EMN:S△EFG=1:16,故④正确;
    故选A.
    本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键.
    3、A
    【解析】
    根据矩形、菱形的性质分别判断即可解决问题.
    【详解】
    A. 对角相等,菱形和矩形都具有的性质,故A正确;
    B. 四边相等,菱形的性质,矩形不具有的性质,故B错误;
    C. 对角线互相垂直,矩形不具有的性质,故C错误;
    D. 四角相等,矩形的性质,菱形不具有的性质,故D错误;
    故选:A.
    此题考查菱形的性质,矩形的性质,解题关键在于掌握各性质定义.
    4、D
    【解析】
    根据二次根式的计算法则对各个选项一一进行计算即可判断出答案.
    【详解】
    A. 不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C. ,故C错误;
    D. 故D正确.
    故选D.
    本题考查了二次根式的运算.熟练应用二次根式的计算法则进行正确计算是解题的关键.
    5、B
    【解析】
    根据中心对称图形的概念 对各选项分析判断即可得解.
    【详解】
    解:A、不是中心对称图形,故本选项错误;
    B、是中心对称图形,故本选项正确;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误.
    故选B.
    本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    6、B
    【解析】
    【分析】分两种情况:m=0时是一元一次方程,一定有实根;m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.
    【详解】当m≠0时,方程为一元二次方程,
    ∵a=m,b=2m+1,c=m且方程有实数根,
    ∴△=b2-4ac=(2m+1)2-4m2≥0,
    ∴m≥且m≠0;
    当m=0时,方程为一元一次方程x=0,一定有实数根,
    所以m的取值范围是m≥,
    故选B.
    【点睛】本题考查了方程有实数根的情况,考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.进行分类讨论是解题的关键.
    7、C
    【解析】
    根据菱形的判定:一组邻边相等的平行四边形是菱形可得答案.
    【详解】
    A. 添加AC=BD可证明平行四边形ABCD是矩形,不能使它变成菱形,故此选项错误;
    B. 添加AD=BC不能证明平行四边形ABCD是菱形,故此选项错误;
    C. 添加AB=BC可证明平行四边形ABCD是菱形,故此选项正确;
    D. 添加AB=CD不能可证明平行四边形ABCD是变成菱形,故此选项错误;
    故选:C.
    本题考查的是菱形,熟练掌握菱形的性质是解题的关键.
    8、A
    【解析】
    为使游戏公平,则凳子到三个人的距离相等,根据线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.
    【详解】
    解:∵三角形的三条边的垂直平分线的交点到三角形三个顶点距离相等,
    ∴凳子应放在△ABC的三边中垂线的交点.
    故选:A.
    本题主要考查了线段垂直平分线的性质的应用,利用所学的数学知识解决实际问题是一种能力,要注意培养.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、 ,
    【解析】
    根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.
    【详解】
    a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,
    数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,
    数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3, a5,a4,a3,a1, a1,处在第3、4位的数据的平均数为 ,
    故答案为:,.
    考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.
    10、甲.
    【解析】
    先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.
    【详解】
    甲的平均数,
    所以甲的方差,
    因为甲的方差比乙的方差小,
    所以甲的成绩比较稳定.
    故答案为:甲.
    本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    11、6174
    【解析】
    用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.
    【详解】
    解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,
    用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,
    用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,
    用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,
    用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,
    用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…
    可知7次变换之后,四位数最后都会停在一个确定的数6174上.
    故答案为6174.
    本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.
    12、144°.
    【解析】
    根据多边形的内角和定理分别求出∠BAE=∠AED=∠FAM=∠AMH,即可求出∠EAM和∠BAF的度数,根据旋转的性质,分顺时针和逆时针讨论,取x的最小值.
    【详解】
    ∵五边形ABCDE,AFGHM是正五边形
    ∴∠BAE=∠AED=∠FAM=∠AMH108°,
    ∴∠AEM=∠AME=72°,
    ∴∠EAM=180°﹣72°﹣72°=36°,
    ∠BAF=360°-∠BAE -∠FAM-∠EAM=108°,
    ∵正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,
    顺时针旋转最小需:36°+108°=144°,逆时针旋转最小需:108°+108°=216°,
    ∴x的最小值为36°+108°=144°
    故答案为:144°.
    本题考查多边形的内角和外角,旋转的性质.能分情况讨论找出旋转前后对应线段并由此计算旋转角是解决此题的关键.
    13、且.
    【解析】
    根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.
    【详解】
    根据二次根式的性质以及分式的意义可得:,且,
    ∴且,
    故答案为:且.
    本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)年平均增长率为10% ;(2).
    【解析】
    设萧山区从2015——2017年年游客接待量的年平均增长率为x,根据这三年累计接待游客高达5958万人次即可得出关于x的一元二次方程,解出取其正值即可得出结论;
    (2)运用(1)的结论进行预测即可.
    【详解】
    (1)解:设年平均增长率为x得:
    由题意得:x>0,∴(舍去)即年平均增长率为10%
    (2)
    ∴若继续呈该趋势增长,预测2018年年游客接待量约为2396万人次.
    本题考查了一元二次方程的应用,解题珠关键是找准等量关系,正确列出一元二次方程.
    15、 (1)见解析;(2)①(5,0);②见解析.
    【解析】
    (1)根据坐标,连接点即可得出函数图像;
    (2)①根据图像,当x≥3时,根据两点坐标可得出函数解析式,进而可得出与轴的交点坐标;
    ②根据函数图像,相应的自变量的取值范围,可得出其性质.
    【详解】
    (1) 如图:
    (2)①(5,0)
    根据图像,当x≥3时,函数图像为一次函数,
    设函数解析式为,将(3,4)和(4,2)两点代入,即得
    解得
    即函数解析式为
    与x轴的交点坐标为(5,0);
    ②答案不唯一.如下几种答案供参考:
    当0≤x≤3时,函数值y随x值增大而增大;
    当x≥3时,函数值y随x值增大而减小;
    当x=3时,函数有最大值为4;
    该函数没有最小值.
    此题主要考查利用函数图像获取信息,进行求解,熟练运用,即可解题.
    16、(1)证明见解析;(2)1.
    【解析】
    分析:(1)先证明四边形AFCE是平行四边形,再证明FA=FC,根据有一组邻边相等的平行四边形是菱形得出结论;
    (2)设DE=x,则AE=EC=8-x,在Rt△ADE中,由勾股定理列方程求得x的值,再求菱形的面积即可.
    详解:(1)∵四边形ABCD是矩形,
    ∴DC∥AB,DC=AB,
    ∵DE=BF,
    ∴EC=AF,
    而EC∥AF,
    ∴四边形AFCE是平行四边形,
    由DC∥AB可得∠ECA=∠FAC,
    ∵∠ECA=∠FCA,
    ∴∠FAC=∠FCA,
    ∴FA=FC,
    ∴平行四边形AFCE是菱形;
    (2)解:设DE=x,则AE=EC=8-x,
    在Rt△ADE中,由勾股定理得
    42+x2=(8-x)2,
    解得x=3,
    ∴菱形的边长EC=8-3=5,
    ∴菱形AFCE的面积为:4×5=1.
    点睛:本题考查了矩形的性质、菱形的性质和判定、菱形的面积、勾股定理.此题难度不大,注意掌握数形结合思想的应用.
    17、(1)排名顺序为乙、甲、丙;(2)录用甲.
    【解析】
    (1)分别求出甲、乙、丙的平均数,然后进行比较即可;
    (2)由题意可知,只有乙不符合规定,甲:84×60%+80×30%+88×10%=83.2,丙:81×60%+84×30%+78×10%=81.6,所以录用甲.
    【详解】
    解:(1),


    ∴,
    ∴排名顺序为乙、甲、丙.
    (2)由题意可知,只有乙不符合规定,
    ∵,


    ∴录用甲.
    本题考查了平均数与加权平均数,熟练运用平均数与加权平均数公式是解题的关键.
    18、(1)14;(2)
    【解析】
    (1)先根据二次根式的性质把各个根式化成最简二次根式,再合并同类二次根式即可.
    (2)根据多项式乘以多项式的运算法则计算即可.
    【详解】
    解:(1)原式=
    =
    =14
    (2)原式=
    =
    本题考查了二次根式的性质和多项式与多项式相乘,解题的关键是准确的化简二次根式,以及掌握乘法运算法则.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1或3
    【解析】
    用t表示出AE和CF,当AE=CF时,以点、、、为顶点的四边形是平行四边形,
    据此求解即可.
    【详解】
    解:设运动时间为t,则AE=t cm,BF=2t cm,
    ∵是等边三角形,cm,
    ∴BC=3 cm,
    ∴CF= ,
    ∵AG∥BC,
    ∴AE∥CF,
    ∴当AE=CF时,以点、、、为顶点的四边形是平行四边形,
    ∴=t,
    ∴2t-3=t或3-2t=t,
    ∴t=3或t=1,
    故答案是:1或3.
    本题考查了平行四边形的判定,平行四边形有很多判定定理,结合题目条件找到所缺的合适的判定条件是解题的关键.
    20、1
    【解析】
    直接利用平行线的性质结合三角形外角的性质分析得出答案.
    【详解】
    ∵AB∥CD,∠1=115°,
    ∴∠FGD=∠1=115°,
    ∴∠C+∠2=∠FGD=115°,
    ∵∠2=65°,
    ∴∠C=115°-65°=1°.
    故答案为:1.
    此题主要考查了平行线的性质、三角形的外角,正确得出∠FGD=∠1=115°是解题关键.
    21、1.
    【解析】
    试题分析:在□ABCD中,BD为对角线,E、F分别是AD,BD的中点,所以EF是△DAB的中位线,因为EF=3,所以AB=1,所以DC=1.
    考点:中位线和平行四边形的性质
    点评:该题较为简单,主要考查学生对三角形中位线的性质和平行四边形性质的掌握程度.
    22、A.5 B.
    【解析】
    A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
    B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
    【详解】
    A.由尺规作图可得直线MN为线段AB的垂直平分线,
    ∴BF=AF=6,E为AB中点,
    ∵点G为AC中点,
    ∴EG为ΔABC的中位线,
    ∴EG∥BC且EG =BC,
    ∵BF+FC=10,
    ∴EG=5;
    B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
    ∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
    ∵BD=DC, ∴AB+AE=EC.
    ∵AB=AB′, ∴EB′=EC,
    ∴DE为ΔCBB′的中位线.
    ∵∠BAC=60°,
    ∴ΔBAB′为顶角是120°的等腰三角形 ,
    ∴∠B=∠B′=30°,
    ∴AF=1,
    ∴BF=,
    ∴BB′=2,
    ∴ED=.
    故答案为:A. 5;B.
    本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
    23、或﹣.
    【解析】
    试题分析:当点F在OB上时,设EF交CD于点P,
    可求点P的坐标为(,1).
    则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
    由题意可得:3+x=2(3﹣x),
    解得:x=.
    由对称性可求当点F在OA上时,x=﹣,
    故满足题意的x的值为或﹣.
    故答案是或﹣.
    考点:动点问题.
    二、解答题(本大题共3个小题,共30分)
    24、见解析.
    【解析】
    连接AC,利用平行四边形的性质易证△ADC≌△CBA,由全等三角形的性质:对应边相等即可得到平行四边形的两组对边分别相等.
    【详解】
    已知:
    求证:
    证明:连接
    四边形是平行四边形
    ABC≌CDA
    本题考查了平行四边形的性质,属于证明命题的题目,此类题目解题的步骤是,先画出图形,再根据图形和原命题写出已知、求证和证明.
    25、(1)80件B种原材料;(2)1.
    【解析】
    (1)设该同学购买x件B种原材料,则购买x件A种原材料,由购买原材料的总费用不超过480元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其内的最大正整数即可;
    (2)设y=a%,根据该同学在本次活动中赚了a%,即可得出关于y的一元二次方程,解之即可得出结论.
    【详解】
    (1)设该同学购买x件B种原材料,则购买x件A种原材料,
    根据题意得:6×x+3×x≤480,
    解得:x≤80,
    ∴x最大值为80,
    答:该同学最多可购买80件B种原材料.
    (2)设y=a%,
    根据题意得:(520+480)×(1+2y)(1-y)=(520+480)×(1+y),
    整理得:4y2-y=0,
    解得:y=0.1或y=0(舍去),
    ∴a%=0.1,a=1.
    答:a的值为1.
    此题考查一元二次方程的应用以及一元一次不等式的应用,解题的关键是找准等量关系,列出不等式或方程.
    26、 (1)见解析;(2)见解析;(3) .
    【解析】
    分析:(1)先证明四边形ABCD是平行四边形,然后证明它是菱形即可.
    (2)由(1)已知四边形ABCD是菱形,所以当△ABD是直角三角形时,四边形ABCD是正方形.
    (3)将线段AC顺时针方向旋转60°得到线段CE,并连接AE,点到直线的距离垂线段最短,所以AP1垂直CE时,AP1取最小值,点P1在E点,AP1取最大值,即可求解.
    详解:证明:(1) AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,
    ∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,
    ∴AD∥BC,∴四边形ABCD是平行四边形.
    又∵AB=AD,∴四边形ABCD是菱形.
    (2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,
    ∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;
    (3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE上运动.
    连接AE,
    ∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,
    ∴AC=CE=AE=8,过点A作于点F,
    ∴.当点P1在点F时,线段AP1最短,此时;.
    当点P1在点E时,线段AP1最长,此时AP1=8,
    ..
    点睛:本题主要考查了菱形的判定和正方形的判定,结合题意认真分析是解题的关键.
    题号





    总分
    得分
    批阅人
    0
    1
    2
    3
    3.5
    4
    4.5

    1
    2
    3
    4
    3
    2
    1

    笔试
    面试
    体能

    84
    80
    88

    94
    92
    69

    81
    84
    78

    相关试卷

    2024年吉林省长春外语学校九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024年吉林省长春外语学校九上数学开学学业水平测试模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024年湖南邵阳县九上数学开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年河南省新乡辉县联考数学九上开学学业水平测试模拟试题【含答案】:

    这是一份2024年河南省新乡辉县联考数学九上开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map