搜索
    上传资料 赚现金
    英语朗读宝

    2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】

    2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】第1页
    2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】第2页
    2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】

    展开

    这是一份2024年聊城市重点中学数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
    A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC
    2、(4分)已知点P在第四象限,且到x轴的距离为3,到y轴的距离为2,则点P的坐标为( )
    A.(-2,3)B.(2,-3)C.(3,-2)D.(-3,2)
    3、(4分)甲、乙、丙、丁四位同学在一次数学测验中的平均成绩是90分,而甲、乙、丙三人的平均成绩是88分,下列说法一定正确的是( )
    A.丁同学的成绩比其他三个同学的成绩都好
    B.四位同学成绩的中位数一定是其中一位同学的成绩
    C.四位同学成绩的众数一定是90分
    D.丁同学成绩是96分
    4、(4分)若,则的值为( )
    A.B.C.D.
    5、(4分)平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有( )
    A.4户B.5户C.6户D.7户
    6、(4分)下列计算中,运算错误的是( )
    A.B.
    C.D.(-)2=3
    7、(4分)下列各组数据中,不能作为直角三角形边长的是( )
    A.B.C.D.
    8、(4分)已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( )
    A.3,4B.4,3C.3,3D.4,4
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
    如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
    10、(4分)计算:=_____________。
    11、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
    12、(4分)《九章算术》中记载:今有户不知高、广,竿不知长、短,横之不出四尺,纵之不出二尺,邪之适出.问户高、广、邪各几何?这段话翻译后是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为_____.
    13、(4分)写出一个经过二、四象限的正比例函数_________________________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在四边形ABCD中,AD//BC,∠A=∠C,CD=2AD,BE⊥AD于点E,F为CD的中点,连接EF、BF.
    (1)求证:四边形ABCD是平行四边形;
    (2)求证:BF平分∠ABC;
    (3)请判断△BEF的形状,并证明你的结论.
    15、(8分)如图,一次函数y=k2x+b的图象与y轴交于点B,与正比例函数y=k1x的图象相交于点A(4,3),且OA=OB.
    (1)分别求出这两个函数的解析式;
    (2)求△AOB的面积;
    16、(8分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.

    17、(10分)已知:AC是菱形ABCD的对角线,且AC=BC.
    (1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.
    ①求证:△PBE是等边三角形;
    ②若BC=5,CE=4,PC=3,求∠PCE的度数;
    (2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.
    18、(10分)(1)计算: (2)计算:
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
    20、(4分)数据101,98,102,100,99的方差是______.
    21、(4分)关于x的一元二次方程(2m-6)x2+x-m2+9=0的常数项为0,则实数m=_______
    22、(4分)如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(AC>BC).已知AB=10cm,则AC的长约为__________cm.(结果精确到0.1cm)
    23、(4分)如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE= 度.
    二、解答题(本大题共3个小题,共30分)
    24、(8分) “端午节”某顾客到商场购买商品,发现如果购买3件A商品和2件B商品共需花费230元,如果购买4件A商品和1件B商品共需花费240元.
    (1)求A商品、B商品的单价分别是多少元?
    (2)商场在“端午节”开展促销活动,促销方法是:购买A商品超过10件,超过部分可以享受6折优惠,若购买x(x>0)件A商品需要花费y元,请你求出y与x的函数关系式.
    (3)在(2)的条件下,顾客决定在A、B两种商品中选购其中一种,且数量超过10件,请你帮助顾客判断买哪种商品省钱.
    25、(10分)如果P 是正方形ABCD 内的一点,且满足∠APB+∠DPC=180°,那么称点P 是正方形 ABCD 的“对补点”.
    (1)如图1,正方形ABCD 的对角线AC,BD 交于点M,求证:点M 是正方形ABCD 的对补点;
    (2)如图2,在平面直角坐标系中,正方形ABCD 的顶点A(1,1),C(3,3).除对角线交点外,请再写出一个该正方形的对补点的坐标,并证明.
    26、(12分)如图,在△ABD中,AB=AD,将△ABD沿BD对折,使点A翻折到点C,E是BD上一点。且BE>DE,连接AE并延长交CD于F,连接CE.
    (1)依题意补全图形;
    (2)判断∠AFD与∠BCE的大小关系并加以证明;
    (3)若∠BAD=120°,过点A作∠FAG=60°交边BC于点G,若BG=m,DF=n,求AB的长度(用含m,n的代数式表示).
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;
    B.菱形的对角线不一定相等;
    C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;
    D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.
    2、B
    【解析】
    试题分析:根据点P在第四象限,所以P点的横坐标在x轴的正半轴上,纵坐标在y轴的负半轴上,由P点到x轴的距离为3,到y轴的距离为2,即可推出P点的横、纵坐标,从而得出(2,-3).
    故选B.
    考点:平面直角坐标系
    3、D
    【解析】
    根据算术平均数的定义,中位数的定义以及众数的定义对各选项分析判断利用排除法求解.
    【详解】
    .解:A、丁同学的成绩为90×4﹣88×3=96(分),而由甲、乙、丙三人的平均成绩是88分无法判断三人的具体成绩,无法比较,此选项错误;
    B、四位同学成绩的中位数可能是四个数据中的一个,也可能不在所列数据中,此选项错误;
    C、由于不清楚四位同学的各自成绩,所以不能判断众数,此选项错误;
    D、丁同学的成绩为90×4﹣88×3=96(分),此选项正确;
    故选D.
    本题考查了算术平均数的定义,中位数的定义,以及众数的定义,是基础题,熟记各概念是解题的关键.
    4、C
    【解析】
    首先设,将代数式化为含有同类项的代数式,即可得解.
    【详解】



    故答案为C.
    此题主要考查分式计算,关键是设参数求值.
    5、B
    【解析】
    根据题意找出用电量在71~80的家庭即可.
    【详解】
    解:用电量在71~80的家庭有:78,74,76,76,79共5户.
    故选:B.
    本题主要考查了数据的收集与整理,理清题意是解题的关键.
    6、C
    【解析】
    根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.
    【详解】
    A、=,所以A选项的计算正确;
    B、=,所以B选项的计算正确;
    C、与不能合并,所以C选项的计算错误;
    D、(-)2=3,所以D选项的计算正确.
    故选:C.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
    7、C
    【解析】
    根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.因此,只需要判断两个较小的数的平方和是否等于最大数的平方即可判断.
    【详解】
    解:A、92+122=152,根据勾股定理的逆定理可知是直角三角形,故选项错误;
    B、52+122=132,根据勾股定理的逆定理可知是直角三角形,故选项错误;
    C、32+52≠72,根据勾股定理的逆定理可知不是直角三角形,故选项正确;
    D、12+=22,根据勾股定理的逆定理可知是直角三角形,故选项错误.
    故选C.
    本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.
    8、C
    【解析】
    根据众数,中位数,平均数的定义即可解答.
    【详解】
    解:已知一组数据2,3,4,x,1,4,3有唯一的众数4,
    只有当x=4时满足条件,
    故平均数= =3,
    中位数=3,
    故答案选C.
    本题考查众数,中位数,平均数的概念,熟悉掌握是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
    【详解】
    解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
    y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
    ∵购进的每一种衬衫的数量都不少于90件,
    ∴a≥90,
    ∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
    故答案为:1.
    一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
    10、2+
    【解析】
    按二次根式的乘法法则求解即可.
    【详解】
    解:.
    本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.
    11、68°
    【解析】
    只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴∠B=∠ADC=66°,AD∥BC,
    ∵AE⊥BC,
    ∴AE⊥AD,
    ∴∠EAD=90°,
    ∵F为DE的中点,
    ∴FA=FD=EF,
    ∵∠EDC=44°,
    ∴∠ADF=∠FAD=22°,
    ∴∠EAF=90°﹣22°=68°,
    故答案为:68°.
    本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    12、x1=(x﹣4)1+(x﹣1)1
    【解析】
    根据题中所给的条件可知,竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高、宽、对角线长.
    【详解】
    解:根据题意可列方程为x1=(x﹣4)1+(x﹣1)1,
    故答案为:x1=(x﹣4)1+(x﹣1)1.
    本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键,难度一般.
    13、y=-2x …(答案不唯一)
    【解析】
    解:答案不唯一,只要k<0即可.如:y=-2x ….故答案为y=-2x …(答案不唯一).
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)见解析;(3)ΔBEF为等腰三角形,见解析.
    【解析】
    (1)由平行线的性质得出∠A+∠ABC=180°,由已知得出∠C+∠ABC=180°,证出AB//BC,即可得出四边形ABCD是平行四边形;
    (2)由平行四边形的性质得出BC=AD,AB//CD,得出∠CFB=∠ABF,由已知得出CF=BC,得出∠CFB=∠CBF,证出∠ABF=∠CBF即可;
    (3)作FG⊥BE于G,证出FG/AD//BC,得出EG=BG,由线段垂直平分线的性质得出EF=BF即可.
    【详解】
    解:(1)证明:∵AD∥BC,
    ∴∠A+∠ABC=180°:
    ∵∠A=∠C
    ∴∠C+∠ABC=180°
    ∴AB∥CD
    ∴四边形ABCD是平行四边形
    (2)证明:
    ∵F点为CD中点
    ∴CD=2CF
    ∴CD=2AD
    ∴CF=AD=BC
    ∴∠CFB=∠CBF
    ∴CD∥AB
    ∴∠CFB=∠FBA
    ∴∠FBA=∠CBF
    ∴BF平分∠ABC
    (3)ΔBEF为等腰三角形
    理由:如图,延长EF交B延长线于点G
    ∴DA∥BG
    ∴∠G=∠DEF
    ∵F为DC中点
    ∴DF=CF
    又∵∠DFE=∠CFG
    ∴ΔDFE≌ΔCFG(AAS)
    ∴FE=FG
    ∵AD∥BC,BE⊥AD
    ∴BE⊥CD
    ∴∠EBG=90°
    在RtΔEBG中,F为BG中点
    ∴BF=EG=EF
    ∴ΔBEF为等腰三角形.
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质、平行线的性质等知识;熟练掌握平行四边形的判定与性质是解题的关键/
    15、(1)y=x,y=2x-5(2)10
    【解析】
    (1)根据A点坐标即可求出y=k1x,由OA=OB得到B点坐标,即可求出一次函数y=k2x+b的关系式;(2)根据坐标与三角形的面积公式即可求解.
    【详解】
    (1)把A代入y=k1x,求出k1=
    ∴直线OA为y=x
    ∵OA==5,OA=OB
    ∴B(0,-5)
    把A(4,3),B(0,-5)代入y=k2x+b求得k2=2,b=-5
    ∴直线AB为y=2x-5
    (2)S△AOB=
    此题主要考查一次函数的图像,解题的关键是数轴一次函数与几何的应用.
    16、见解析
    【解析】
    图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.
    【详解】
    解:如图:
    本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.
    17、(1)①见解析,②∠PCE=30°;(2)AG+EG+DG的最小值为1.
    【解析】
    (1)①先判断出△ABC等边三角形,得出∠ABC=60°,再由旋转知BP=BE,∠PBE=∠ABC=60°,即可得出结论.
    ②先用勾股定理的逆定理判断出△ACP是直角三角形,得出∠APC=90°,进而判断出∠PBE+∠PCE=90°,即可得出结论;
    (2)先判断出△G'DG是等边三角形,得出GG'=DG,即:AG+EG+DG=A'G'+EG+GG'得出当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即可得出结论.
    【详解】
    解:(1)①∵四边形ABCD是菱形
    ∴AB=BC,
    ∵AC=BC,
    ∴AB=BC=AC,
    ∴△ABC等边三角形,
    ∴∠ABC=60°,
    由旋转知BP=BE,∠CBE=∠ABP
    ∴∠CBE+∠PBC=∠ABP+∠PBC
    ∴∠PBE=∠ABC=60°,
    ∴△PBE是等边三角形;
    ②由①知AB=BC=1
    ∵由旋转知△ABP≌△CBE,
    ∴AP=CE=4,∠APB=∠BEC,
    ∵AP2+PC2=42+32=21=AC2,
    ∴△ACP是直角三角形,
    ∴∠APC=90°,
    ∴∠APB+∠BPC=270°,
    ∵∠APB=∠CEB,
    ∴∠CEB+∠BPC=270°,
    ∴∠PBE+∠PCE=360°-(∠CEB+∠BPC)=90°,
    ∵∠PBE=∠ABC=60°,
    ∴∠PCE=90°-60°=30°;
    (2)如图,将△ADG绕着点D顺时针旋转60°得到△A'DG',
    由旋转知△ADG≌△A'DG',
    ∴A'D=AD=4,G'D=GD,A'G'=AG,
    ∵∠G'DG=60°,G'D=GD,
    ∴△G'DG是等边三角形,
    ∴GG'=DG,
    ∴AG+EG+DG=A'G'+EG+GG'
    ∵当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,
    即AG+EG+DG的值最小,
    ∵∠A'DA=60°,∠ADE=∠ADC=30°,
    ∴∠A'DE=90°,
    ∴AG+EG+DG=A'G'+EG+G'G=A'E==1,
    ∴AG+EG+DG的最小值为1.
    此题是四边形综合题,主要考查了等边三角形性质和判定,勾股定理,勾股定理的逆定理,旋转的性质,判断出点A',G',G,E四点共线时,A'G'+EG+G'G的值最小,是解本题的关键.
    18、(1)15;(2).
    【解析】
    (1)先进行二次根式的化简,然后再根据二次根式乘除法的运算法则进行计算即可;
    (2)先分别化简各个二次根式,然后再进行合并即可.
    【详解】
    (1)原式=3×5÷
    =15÷
    =15;
    (2)原式=3﹣4+
    =-+.
    本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、87.1.
    【解析】
    根据加权平均数的含义和求法,可求出甲的平均成绩.
    【详解】
    面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
    甲的平均成绩为:(分).
    故答案为:87.1.
    考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
    20、1
    【解析】
    先求平均数,再根据方差公式求方差.
    【详解】
    平均数 .x=(98+99+100+101+101)=100,
    方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
    故答案为1
    本题考核知识点:方差. 解题关键点:熟记方差公式.
    21、-3
    【解析】
    分析:根据常数项为0,且二次项系数不为0列式求解即可.
    详解:由题意得,

    解之得,
    m=-3.
    故答案为:-3.
    点睛:本题考查了一元二次方程的定义,本题的易错点是有些同学只考虑常数项为0这一条件,而忽视了二次项系数不为0这一隐含的条件.
    22、6.2
    【解析】
    根据黄金分割的计算公式正确计算即可.
    【详解】
    ∵点C分线段AB近似于黄金分割点(AC>BC),
    ∴AC=,
    ∵AB=10cm,
    ∴AC=,
    故答案为:6.2.
    此题考查黄金分割点的计算公式,正确掌握公式是解题的关键.
    23、1
    【解析】
    由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出∠ADE的度数.
    【详解】
    ∵D,E分别为AB,AC的中点,
    ∴DE是三角形的中位线,
    ∴DE∥BC,
    ∴∠ADE=∠B=1°,
    故答案为1.
    本题考查了三角形中位线的性质以及平行线的性质.
    二、解答题(本大题共3个小题,共30分)
    24、(1)A商品、B商品的单价分别是50元、40元;
    (2);
    (3)当购进商品少于20件,选择购B种商品省钱.
    【解析】
    (1)根据题意设每件A商品的单价是x元,每件B商品的单价是y元,再建立方程式进行作答.(2)根据题意建立相关的一次函数.(3)根据题意,需要分情况讨论.再利用(2)中结论,得到商品为20件时,进行分类讨论.
    【详解】
    (1)设每件A商品的单价是x元,每件B商品的单价是y元,由题意得

    解得.
    答:A商品、B商品的单价分别是50元、40元;
    (2)当0<x≤10时,y=50x;
    当x>10时,y=10×50+(x﹣10)×50×0.6=30x+200;
    综上所述:
    (3)设购进A商品a件(a>10),则B商品消费40a元;
    当40a=30a+200,
    则a=20
    所以当购进商品正好20件,选择购其中一种即可;
    当40a>30a+200,
    则a>20
    所以当购进商品超过20件,选择购A种商品省钱;
    当40a<30a+200,
    则a<20
    所以当购进商品少于20件,选择购B种商品省钱.
    本题考查了在实际运用中方程式的建立及相关讨论,熟练掌握在实际运用中方程式的建立及相关讨论是本题解题关键.
    25、(1)证明见解析;
    (2)对补点如:N(,).证明见解析
    【解析】
    试题分析:(1)根据正方形的对角线互相垂直,得到∠DMC=∠AMB=90°,从而得到点M是正方形ABCD的对补点.(2) 在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可,通过证明△DCN≌△BCN,得到∠CND=∠CNB,利用邻补角的性质即可得出结论.
    试题解析:
    (1)
    ∵四边形ABCD是正方形,
    ∴ AC⊥BD.
    ∴ ∠DMC=∠AMB=90°.
    即 ∠DMC+∠AMB=180°.
    ∴ 点M是正方形ABCD的对补点.
    (2)对补点如:N(,).
    说明:在直线y=x(1<x<3)或直线y=-x+4(1<x<3)上
    除(2,2)外的任意点均可.
    证明(方法一):
    连接AC ,BD
    由(1)得此时对角线的交点为(2,2).
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,
    可求得直线AC的解析式为:y=x.
    则点N(,)是直线AC上除对角线交点外的一点,且在正方形ABCD内.
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD的对补点.
    证明(方法二):
    连接AC ,BD,
    由(1)得此时对角线的交点为(2,2).
    设点N是线段AC上的一点(端点A,C及对角线交点除外),
    连接AC,DN,BN,
    ∵ 四边形ABCD是正方形,
    ∴ DC=BC,∠DCN=∠BCN.
    又∵ CN=CN,
    ∴ △DCN≌△BCN.
    ∴ ∠CND=∠CNB.
    ∵ ∠CNB+∠ANB=180°,
    ∴ ∠CND+∠ANB=180°.
    ∴ 点N是正方形ABCD除对角线交点外的对补点.
    设直线AC的解析式为:y=kx+b,
    把点A(1,1),C(3,3)分别代入,可求得直线AC的解析式为:y=x.
    在1<x<3范围内,任取一点均为该正方形的对补点,如N(,).
    26、 (1)见解析;(2)∠BCE=∠AFD;(3)AB=m+n
    【解析】
    (1)将△ABD沿BD对折,使点A翻折到点C,在BD上取一点E,BE>DE,连接AE并延长交CD于F,连接CE.据此画图即可;
    (2)先证出四边形ABCD是菱形,得∠BAF=∠AFD,再证出ΔABE≌ΔCBE,得到∠BCE=∠BAE.,所以∠BCE=∠AFD;
    (3)由已知得出ΔACD是等边三角形,所以AD=AC, 再根据∠FAG=60°证出∠CAG=∠DAF,然后证明ΔACG≌ΔADF,得到CG=DF,从而得出AB=BC=m+n..
    【详解】
    (1)如图所示:

    (2) ∠BCE=∠AFD,
    理由:
    由题意可知:∠ABD=∠CBD,AB=BC=AD=CD
    ∴四边形ABCD是菱形
    ∴∠BAF=∠AFD
    在ΔABE和ΔCBE中
    ∴ΔABE≌ΔCBE(SAS)
    ∴∠BCE=∠BAE.
    ∴∠BCE=∠AFD.
    (3)如图
    ∵四边形ABCD是菱形,∠BAD=120°,
    ∴∠CAD=∠CAB=60°
    ∴ΔACD是等边三角形
    ∴AD=AC
    ∵∠GAC+∠FAC=60°,且∠FAC+∠DAF=60°
    ∴∠CAG=∠DAF
    在ΔACG和ΔADF中,
    ∴ΔACG≌ΔADF(ASA)
    ∴CG=DF
    ∵DF=n,BG=m
    ∴CG=n
    ∴BC=m+n
    ∴AB=BC=m+n.
    本题考查了折叠问题,菱形的判定和性质以及全等三角形的判定和性质,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    题号





    总分
    得分
    批阅人
    型号
    A
    B
    C
    进价(元/件)
    100
    200
    150
    售价(元/件)
    200
    350
    300

    相关试卷

    2024年嘉兴市重点中学数学九上开学统考试题【含答案】:

    这是一份2024年嘉兴市重点中学数学九上开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】:

    这是一份2024年嘉兴市重点中学数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年合肥市寿春中学数学九年级第一学期开学统考试题【含答案】:

    这是一份2024年合肥市寿春中学数学九年级第一学期开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map