2024年眉山市重点中学数学九上开学达标检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于x的方程mx2+(2m+1)x+m = 0,有实数根,则m的取值范围是( )
A.m>且m≠0B.m≥C.m≥且m≠0D.以上答案都不对
2、(4分)已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是( )
A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<2
3、(4分)如图,在中,对角线,相交于点,点分别是边的中点,交与点,则与的比值是( )
A.B.C.D.
4、(4分)如图,在平行四边形中,,,的平分线交于点,则的长是( )
A.4B.3C.3.5D.2
5、(4分)已知x=,y=,则x2+xy+y2的值为( )
A.2B.4C.5D.7
6、(4分)函数的自变量的取值范围是( )
A.x≠3B.x≥﹣2C.x≥﹣2且x≠3D.x≥3
7、(4分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )
A.1B.2C.3D.4
8、(4分)如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为( )
A.8B.10C.12D.14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知,与之间的距离为3, 与之间的距离为6, 分别等边三角形的三个顶点,则此三角形的边长为__________.
10、(4分)如果代数式有意义,那么字母x的取值范围是_____.
11、(4分)直线向上平移4个单位后,所得直线的解析式为________.
12、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.
13、(4分)将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系中,已知,,三点的坐标.
(1)写出点关于原点的对称点的坐标,点关于轴的对称点的坐标,点关于轴的对称点的坐标;
(2)求(1)中的的面积.
15、(8分)计算题:
(1); (2).
16、(8分)如图,ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.
(1)求∠APB的度数;
(2)如果AD=5cm,AP=8cm,求△APB的周长.
17、(10分)如图,已知反比例函数的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
18、(10分)某学习小组在学习了函数及函数图象的知识后,想利用此知识来探究周长一定的矩形其边长分别为多少时面积最大. 请将他们的探究过程补充完整.
(1)列函数表达式:若矩形的周长为8,设矩形的一边长为x,面积为y,则有y=____________;
(2)上述函数表达式中,自变量x的取值范围是____________;
(3)列表:
写出m=____________;
(4)画图:在平面直角坐标系中已描出了上表中部分各对应值为坐标的点,请你画出该函数的图象;
(5)结合图象可得,x=____________时,矩形的面积最大;写出该函数的其它性质(一条即可):____________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知边长为5cm的菱形,一条对角线长为6cm,则另一条对角线的长为________cm.
20、(4分)已知a+ = ,则a-=__________
21、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
22、(4分)从A,B两题中任选一题作答:
A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.
B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.
23、(4分)化简:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:
经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.
(1)求 a,b 的值;
(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司 有哪几种购买方案;
(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节 约资金,请你为治污公司设计一种最省钱的购买方案.
25、(10分)某商城经销一款新产品,该产品的进价6元/件,售价为9元/件.工作人员对30天销售情况进行跟踪记录并绘制成图象,图中的折线OAB表示日销售量(件)与销售时间(天)之间的函数关系.
(1)第18天的日销售量是 件
(2)求与之间的函数关系式,并写出的取值范围
(3)日销售利润不低于900元的天数共有多少天?
26、(12分)为了选拔一名学生参加全市诗词大赛,学校组织了四次测试,其中甲乙两位同学成绩较为优秀,他们在四次测试中的成绩(单位:分)如表所示.
(1)分别求出两位同学在四次测试中的平均分;
(2)分别求出两位同学测试成绩的方差.你认为选谁参加比赛更合适,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
【分析】分两种情况:m=0时是一元一次方程,一定有实根;m≠0时,方程有两个实数根,则根的判别式△≥0,建立关于m的不等式,求得m的取值范围.
【详解】当m≠0时,方程为一元二次方程,
∵a=m,b=2m+1,c=m且方程有实数根,
∴△=b2-4ac=(2m+1)2-4m2≥0,
∴m≥且m≠0;
当m=0时,方程为一元一次方程x=0,一定有实数根,
所以m的取值范围是m≥,
故选B.
【点睛】本题考查了方程有实数根的情况,考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.进行分类讨论是解题的关键.
2、D
【解析】
若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.
【详解】
解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,
∴k﹣2<1,k+1≥1
解得:﹣1≤k<2,
故选:D.
本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.
3、C
【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由点E,F分别是边AD,AB的中点,可得AH:AO=1:2,即可得AH:AC=1:4,继而求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵点E,F分别是边AD,AB的中点,
∴EF∥BD,
∴△AFH∽△ABO,
∴AH:AO=AF:AB,
故选:C
此题考查了平行四边形的性质、三角形中位线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
4、B
【解析】
根据平行四边形的性质可得,再根据角平分线的性质可推出,根据等角对等边可得,即可求出的长.
【详解】
∵四边形ABCD是平行四边形
∴
∴
∵是的平分线
∴
∴
∴
∴
故答案为:B.
本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
5、B
【解析】
试题分析:根据二次根式的运算法则进行运算即可.
试题解析:
.
故应选B
考点:1.二次根式的混合运算;2.求代数式的值.
6、C
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
解:由题意得,且,
解得且.
故选C.
本题考查了函数自变量的范围,一般从三个方面考虑:
当函数表达式是整式时,自变量可取全体实数;
当函数表达式是分式时,考虑分式的分母不能为0;
当函数表达式是二次根式时,被开方数非负.
7、D
【解析】
【分析】过点C作轴,设点 ,则 得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.
【解答】过点C作轴,
设点 ,则
得到点C的坐标为:
的面积为1,
即
故选D.
【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.
8、C
【解析】
根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
【详解】
解:根据题意,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=10,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.
本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.
【详解】
如图,构造一线三等角,使得.
∵a∥c,
∴∠1=∠AFD=60°,
∴∠2+∠CAF=60°.
∵a∥b,
∴∠2=∠3,
∴∠3+∠CAF=60°.
∵∠3+∠4=60°,
∴∠4=∠CAF,
∵b∥c,
∴∠4=∠5,
∴∠5=∠CAF,
又∵AC=BC,∠AFC=∠CGB,
∴,
∴CG=AF.
∵∠ACF=60°,
∴DAF=30°,
∴DF=AF,
∵AF2=AD2+DF2,
∴,
∴,
同理可求,
∴,
∴.
本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.
10、x⩾−2且x≠1
【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.
【详解】
∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.
本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.
11、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
由“上加下减”的原则可知,将直线向上平移4个单位后所得的直线的解析式是+4,即.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
12、
【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
【详解】
设BG=x,
则BE=x,
∵BE=BC,
∴BC=x,
则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.
故答案为:.
本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.
13、y=-2x+1
【解析】
根据上下平移时只需让b的值加减即可,进而得出答案即可.
解:原直线的k= -2,b=0;向上平移1个单位得到了新直线,
那么新直线的k= -2,b=0+1=1.
故新直线的解析式为:y= -2x+1.
故答案为y= -2x+1.
“点睛”此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.
三、解答题(本大题共5个小题,共48分)
14、 (1) A′的坐标为(1,−5), B′的坐标为(4,−2), C′的坐标为(1,0);(2).
【解析】
(1)根据点关于原点对称、关于x轴的对称和关于y轴对称的点的坐标特征求解;
(2)利用三角形面积公式求解.
【详解】
(1)点A关于原点O的对称点A′的坐标为(1,−5),点B关于x轴的对称点B′的坐标为(4,−2),点C关于y轴的对称点C′的坐标为(1,0).
(2)以A′C′为底边,B′D为高,可得:△A′B′C′的面积=×5×3=.
此题考查坐标与图形-对称轴变换,解题关键在于掌握运算公式.
15、 (1) ;(2) 1.
【解析】
分析:(1)先把各二次根式化为最简二次根式,然后合并即可;
(2)利用平方差公式计算.
详解:(1)原式=3-2 =;
(2)原式=3-(5-3)=1.
点睛:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.
16、 (1)∠APB=90°; (2)△APB的周长是24cm.
【解析】
【分析】(1)根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB即可;
(2)求出AD=DP=5,BC=PC=5,求出DC=10=AB,即可求出答案.
【详解】(1)∵四边形是平行四边形,
∴∥ ,∥, ,
∴ ,
又∵和分别平分和,
∴ ,
∴ ;
(2) ∵平分,∥ ,
∴ ,
∴ ,同理: ,
∴ ,
在中, , ∴ ,
∴△的周长.
【点睛】本题考查了平行四边形的性质,等腰三角形的判定与性质等,熟练掌握平行四边形的性质是解题的关键.
17、(1);(2)m>n.
【解析】
(1)根据待定系数法即可求得;
(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据1<3<0,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.
【详解】
解:(1)因为反比例函数y=的图象经过点A(-3,-2),
把x=-3,y=-2代入解析式可得:k=6,
所以解析式为:y=;
(2)∵k=6>0,
∴图象在一、三象限,造,在每个向西安内,y随x的增大而减小,
又∵0<1<3,
∴B(1,m)、C(3,n)两个点在第一象限,
∴m>n.
本题考查待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.
18、见解析
【解析】
(1)根据矩形的周长表示出另一边长,然后利用矩形面积公式即可求得y与x间的关系式;
(2)根据矩形周长以及边长大于0即可求得;
(3)把x=3.5代入(1)中的解析式即可求得m的值;
(4)按从左到右的顺序用平滑的曲线进行画图即可;
(5)观察图象即可得.
【详解】
(1)因为矩形一边长为x,则另一边长为(-x)=(4-x),
依题意得:矩形的面积y=x(4-x),
即y=-x2+4x,
故答案为:-x2 + 4x;
(2)由题意得,解得:0<x<4,
故答案为:0<x<4;
(3)当x=3.5时,y=-3.52+4×3.5=1.75,
故答案为:1.75;
(4)如图所示;
(5)观察图象可知当x=2时矩形面积最大,
轴对称图形;当0<x≤2时,y随x的增大而增大等,
故答案为:2;轴对称图形或当0<x≤2时,y随x的增大而增大.
本题考查了二次函数的应用,正确理解题意,得出函数解析式是解题的关键.注意数形结合思想的运用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8
【解析】
根据菱形的对角线互相垂直平分,得已知对角线的一半是1.根据勾股定理,得要求的对角线的一半是4,则另一条对角线的长是8.
【详解】
解:在菱形ABCD中,AB=5,AC=6,
因为对角线互相垂直平分,
所以∠AOB=90°,AO=1,
在RT△AOB中,BO=,
∴BD=2BO=8.
注意菱形对角线的性质:菱形的对角线互相垂直平分.熟练运用勾股定理.
20、
【解析】
通过完全平方公式即可解答.
【详解】
解:已知a+ = ,
则= =10,
则= =6,
故a-=.
本题考查完全平方公式的运用,熟悉掌握是解题关键.
21、2.
【解析】
试题分析:根据菱形的面积等于对角线乘积的一半解答.
试题解析:∵AC=4cm,BD=8cm,
∴菱形的面积=×4×8=2cm1.
考点:菱形的性质.
22、A.5 B.
【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;
B. 延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.
【详解】
A.由尺规作图可得直线MN为线段AB的垂直平分线,
∴BF=AF=6,E为AB中点,
∵点G为AC中点,
∴EG为ΔABC的中位线,
∴EG∥BC且EG =BC,
∵BF+FC=10,
∴EG=5;
B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.
∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.
∵BD=DC, ∴AB+AE=EC.
∵AB=AB′, ∴EB′=EC,
∴DE为ΔCBB′的中位线.
∵∠BAC=60°,
∴ΔBAB′为顶角是120°的等腰三角形 ,
∴∠B=∠B′=30°,
∴AF=1,
∴BF=,
∴BB′=2,
∴ED=.
故答案为:A. 5;B.
本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.
23、
【解析】
算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.
【详解】
8的算术平方根为.∴
故答案为:.
此题考查算术平方根的定义,解题关键在于掌握其定义.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.
【解析】
(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;
(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;
(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.
【详解】
(1)根据题意得: ,
∴ ;
(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,
则:12x+10(10−x)⩽105,
∴x⩽2.5,
∵x取非负整数,
∴x=0,1,2,
∴有三种购买方案:
①A型设备0台,B型设备10台;
②A型设备1台,B型设备9台;
③A型设备2台,B型设备8台.
(3)由题意:240x+200(10−x)⩾2040,
∴x⩾1,
又∵x⩽2.5,x取非负整数,
∴x为1,2.
当x=1时,购买资金为:12×1+10×9=102(万元),
当x=2时,购买资金为:12×2+10×8=104(万元),
∴为了节约资金,应选购A型设备1台,B型设备9台.
此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.
25、(1)360;(2)y=;(3)16天
【解析】
(1)根据图象即可得到结论;
(2)根据点的坐标,利用待定系数法可求出直线OA、AB的函数关系式,即可找出y与x之间的函数关系式;
(3)根据日销售量=日销售利润÷每件的利润,可求出日销售量,将其分别代入OA、AB的函数关系式中求出x值,将其相减加1即可求出日销售利润不低于900元的天数.
【详解】
解:(1)由图象知,第18天的日销售量是360件;
故答案为:360;
(2)当时,设直线OA的函数解析式为:y=kx,
把(18,360)代入得360=18k,
解得:k=20,
∴y=20x(0≤x≤18),
当18
解得:,
∴直线AB的函数解析式为:y=-5x+450,
综上所述,y与x之间的函数关系式为:y=;
(3)当 0≤x≤18 时,根据题意得,(9-6)×20x≥900,解得:x≥15;
当 18<x≤1 时,根据题意得,(9-6)×(-5x+450)≥900,解得:x≤1.
∴15≤x≤1;
∴1-15+1=16(天),
∴日销售利润不低于 900 元的天数共有 16天.
本题考查了一次函数的应用,解题的关键是:根据点的坐标,利用待定系数法求出函数关系式;利用一次函数图象上点的坐标特征求出日销售利润等于900元的销售时间.
26、(1)(分,(分;(2)选择甲参加比赛更合适.
【解析】
(1)由平均数的公式计算即可;
(2)先分别求出两位同学测试成绩的方差,再根据方差的意义求解即可.
【详解】
解:(1)(分,
(分,
(2),
,
甲的方差小于乙的方差,
选择甲参加比赛更合适.
本题考查了方差与平均数.平均数是指在一组数据中所有数据之和再除以数据的个数.方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
题号
一
二
三
四
五
总分
得分
批阅人
x
…
0.5
1
1.5
2
2.5
3
3.5
…
y
…
1.75
3
3.75
4
3.75
3
m
…
A 型
B 型
价格(万元/台)
a
b
处理污水量(吨/月)
240
200
甲
90
85
95
90
乙
98
82
88
92
2024年济宁市重点中学数学九上开学检测试题【含答案】: 这是一份2024年济宁市重点中学数学九上开学检测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年潮安龙湖中学数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】: 这是一份2024年北京市丰台区十八中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。