所属成套资源:中考数学复习重难题型真题再现(全国通用)专题特训(原卷版+解析)
中考数学复习重难题型真题再现(全国通用)专题10函数的实际应用(利润最值、抛物线型、几何图形)特训(原卷版+解析)
展开
这是一份中考数学复习重难题型真题再现(全国通用)专题10函数的实际应用(利润最值、抛物线型、几何图形)特训(原卷版+解析),共56页。试卷主要包含了的一次函数.等内容,欢迎下载使用。
1.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
2.(2022·山东滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
(1)求y关于x的一次函数解析式;
(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
3.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
4.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价.
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)
5.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
6.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.
(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
(2)当降价多少元时,工厂每天的利润最大,最大为多少元?
(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
7.(2021·湖南怀化市·中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:
(1)求A、B两种型号的水杯进价各是多少元?
(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?
(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?
8.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
9.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
10.(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:
(1)求y与x的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
11.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
12.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
(1)求k,b的值;
(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.
13.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
14.(2020•黔东南州)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
请写出当11≤x≤19时,y与x之间的函数关系式.
(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?
类型二抛物线型问题
15.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.
(1)求满足设计要求的抛物线的函数表达式;
(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.
16.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
17.在平面直角坐标系xy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
18.已知函数(,为常数)的图象经过点.
(1)求,满足的关系式;
(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;
(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
19.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是.
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处.有一名身高的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);
(3)如图③,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围.
20.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围.
类型三几何图形问题
21.(2020•无锡)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.
(1)当x=5时,求种植总成本y;
(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.
22.(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:2取1.4)
23.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求
(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;
(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.
24.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.
(1)当四边形EFGH为正方形时,求DG的长;
(2)当DG=6时,求△FCG的面积;
(3)求△FCG的面积的最小值.
25.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.
(1)求S关于m的函数关系式.
(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.
26..[问题提出]
(1)如图①,在中,为上一点,则面积的最大值是
(2)如图②,已知矩形的周长为,求矩形面积的最大值
[实际应用]
(3)如图③,现有一块四边形的木板余料,经测量且木匠师傅从这块余料中裁出了顶点在边上且面积最大的矩形求该矩形的面积
27.如图,已知,是线段上的两点,,,,以为中心顺时针旋转点,以为中心逆时针旋转点,使,两点重合成一点,构成,设.
(1)求的取值范围;
(2)求面积的最大值.
28.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.
(1)求出图②中线段PQ所在直线的函数表达式;
(2)将△DCE沿DE翻折,得△DME.
①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;
②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.
进货批次
A型水杯(个)
B型水杯(个)
总费用(元)
一
100
200
8000
二
200
300
13000
购票方式
甲
乙
丙
可游玩景点
和
门票价格
100元/人
80元/人
160元/人
x(元/件)
12
13
14
15
16
y(件)
1200
1100
1000
900
800
销售单价x(元/件)
11
19
日销售量y(件)
18
2
专题10函数的实际应用(利润最值、抛物线型、几何图形)
类型一利润最值问题
1.(2022·湖北荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24-x,第一年除60万元外其他成本为8元/件.
(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;
(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?
【答案】(1)
(2)①第一年的售价为每件16元,②第二年的最低利润为万元.
【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;
(2)①把代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.
(1)解:由题意得:
(2)①由(1)得:当时,
则即
解得:
即第一年的售价为每件16元,
② 第二年售价不高于第一年,销售量不超过13万件,
解得:
其他成本下降2元/件,
∴
对称轴为
当时,利润最高,为77万元,而
当时,(万元)
当时, (万元)
所以第二年的最低利润为万元.
【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.
2.(2022·山东滨州)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y是销售价格x(单位:元)的一次函数.
(1)求y关于x的一次函数解析式;
(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.
【答案】(1)
(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元
【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;
(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.
(1)解:设,把,和,代入可得
,解得,
则;
(2)解:每月获得利润
.
∵,
∴当时,P有最大值,最大值为3630.
答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.
【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.
3.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
【答案】(1)每盒产品的成本为30元.(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元.
【分析】
(1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;
(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;
(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可.
【详解】
解:(1)设原料单价为元,则原料单价为元.
依题意,得.
解得,,.
经检验,是原方程的根.
∴每盒产品的成本为:(元).
答:每盒产品的成本为30元.
(2)
;
(3)∵抛物线的对称轴为=70,开口向下
∴当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;
当时,每天的最大利润为元.
【点睛】
本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.
4.(2021·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.
(1)求苹果的进价.
(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.
(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)
【答案】(1)苹果的进价为10元/千克;(2);(3)要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
【分析】
(1)设苹果的进价为x元/千克,根据等量关系,列出分式方程,即可求解;
(2)分两种情况:当x≤100时, 当x>100时,分别列出函数解析式,即可;
(3)分两种情况:若x≤100时,若x>100时,分别求出w关于x的函数解析式,根据二次函数的性质,即可求解.
【详解】
解:(1)设苹果的进价为x元/千克,
由题意得:,解得:x=10,
经检验:x=10是方程的解,且符合题意,
答:苹果的进价为10元/千克;
(2)当x≤100时,y=10x,
当x>100时,y=10×100+(10-2)×(x-100)=8x+200,
∴;
(3)若x≤100时,w=zx-y==,
∴当x=100时,w最大=100,
若x>100时,w==zx-y==,
∴当x=200时,w最大=600,
综上所述:当x=200时,超市销售苹果利润w最大,
答:要使超市销售苹果利润w最大,一天购进苹果数量为200千克.
【点睛】
本题主要考查分式方程、一次函数、二次函数的实际应用,根据数量关系,列出函数解析式和分式方程,是解题的关键.
5.(2021·四川遂宁市·中考真题)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.
(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?
(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?
【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元
【分析】
(1)根据题意,通过列一元二次方程并求解,即可得到答案;
(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案.
【详解】
(1)由题意列方程得:(x+40-30) (300-10x)=3360
解得:x1=2,x2=18
∵要尽可能减少库存,
∴x2=18不合题意,故舍去
∴T恤的销售单价应提高2元;
(2)设利润为M元,由题意可得:
M=(x+40-30)(300-10x)=-10x2+200x+3000=
∴当x=10时,M最大值=4000元
∴销售单价:40+10=50元
∴当服装店将销售单价50元时,得到最大利润是4000元.
【点睛】
本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.
6.(2021·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.
(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?
(2)当降价多少元时,工厂每天的利润最大,最大为多少元?
(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?
【答案】(1),9600;(2)降价4元,最大利润为9800元;(3)43
【分析】
(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代入求出对应函数值即可;
(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;
(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可.
【详解】
(1)若降价元,则每天销量可增加千克,
∴,
整理得:,
当时,,
∴每天的利润为9600元;
(2),
∵,
∴当时,取得最大值,最大值为9800,
∴降价4元,利润最大,最大利润为9800元;
(3)令,得:,
解得:,,
∵要让利于民,
∴,(元)
∴定价为43元.
【点睛】
本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键.
7.(2021·湖南怀化市·中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:
(1)求A、B两种型号的水杯进价各是多少元?
(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?
(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?
【答案】(1)A型号水杯进价为20元,B型号水杯进价为30元;(2)超市应将B型水杯降价5元后,每天售出B型水杯的利润达到最大,最大利润为405元;(3)A,B两种杯子全部售出,捐款后利润不变,此时b为4元,利润为3000元.
【分析】
(1)主要运用二元一次方程组,设A型号水杯为x元,B型号水杯为y元,根据表格即可得出方程组,解出二元一次方程组即可得A、B型号水杯的单价;
(2)主要运用二次函数,由题意可设:超市应将B型水杯降价z元后,每天售出B型水杯的利润达到最大,最大利润为w,每个水杯的利润为元;每降价1元,多售出5个,可得售出的数量为个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;
(3)根据(1)A型号水杯为20元,B型号水杯为30元.设10000元购买A型水杯m个,B型水杯n个,所得利润为W元,可列出方程组,利用代入消元法化简得到利润W的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b,W.
【详解】
(1)解:设A型号水杯进价为x元,B型号水杯进价为y元,
根据题意可得:,
解得:,
∴A型号水杯进价为20元,B型号水杯进价为30元.
(2)设:超市应将B型水杯降价z元后,每天售出B型水杯的利润达到最大,最大利润为w,
根据题意可得:,
化简得:,
当时,
,
∴超市应将B型水杯降价5元后,每天售出B型水杯的利润达到最大,最大利润为405元.
(3)设购买A型水杯m个,B型水杯n个,所得利润为W元,
根据题意可得:
将①代入②可得:,
化简得:,
使得A,B两种杯子全部售出后,捐款后所得利润不变,
则,得,
当时,,
∴A,B两种杯子全部售出,捐款后利润不变,此时b为4元,利润为3000元.
【点睛】
题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用.
8.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.
(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;
(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:
据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.
①若丙种门票价格下降10元,求景区六月份的门票总收入;
②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?
【答案】(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元
【分析】
(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的游客为人,再列方程,解方程可得答案;
(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低元,景区六月份的门票总收人为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.
【详解】
解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,
由题意,得
解这个方程,得(舍去)
答:四月和五月这两个月中,该景区游客人数平均每月增长20%.
(2)①由题意,丙种门票价格下降10元,得:
购买丙种门票的人数增加:(万人),
购买甲种门票的人数为:(万人),
购买乙种门票的人数为:(万人),
所以:门票收入问;
(万元)
答:景区六月份的门票总收入为798万元.
②设丙种门票价格降低元,景区六月份的门票总收人为万元,
由题意,得
化简,得,
,
∴当时,取最大值,为817.6万元.
答:当丙种门票价格降低24元时,景区六月份的门票总收人有最大值,为817.6万元.
【点睛】
本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.
9.(2021·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.
(1)求每盒产品的成本(成本=原料费+其他成本);
(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);
(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.
【答案】(1)每盒产品的成本为30元.(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元.
【分析】
(1)设原料单价为元,则原料单价为元.然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;
(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;
(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可.
【详解】
解:(1)设原料单价为元,则原料单价为元.
依题意,得.
解得,,.
经检验,是原方程的根.
∴每盒产品的成本为:(元).
答:每盒产品的成本为30元.
(2)
;
(3)∵抛物线的对称轴为=70,开口向下
∴当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;
当时,每天的最大利润为元.
【点睛】
本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.
10.(2020•成都)在“新冠”疫情期间,全国人民“众志成城,同心抗疫”,某商家决定将一个月获得的利润全部捐赠给社区用于抗疫.已知商家购进一批产品,成本为10元/件,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y(单位:件)与线下售价x(单位:元/件,12≤x<24)满足一次函数的关系,部分数据如下表:
(1)求y与x的函数关系式;
(2)若线上售价始终比线下每件便宜2元,且线上的月销量固定为400件.试问:当x为多少时,线上和线下月利润总和达到最大?并求出此时的最大利润.
【分析】
(1)由待定系数法求出y与x的函数关系式即可;
(2)设线上和线下月利润总和为m元,则m=400(x﹣2﹣10)+y(x﹣10)=400x﹣4800+(﹣100x+2400)(x﹣10)=﹣100(x﹣19)2+7300,由二次函数的性质即可得出答案.
【解析】
(1)∵y与x满足一次函数的关系,
∴设y=kx+b,
将x=12,y=1200;x=13,y=1100代入得:1200=12k+b1100=13k+b,
解得:k=−100b=2400,
∴y与x的函数关系式为:y=﹣100x+2400;
(2)设线上和线下月利润总和为m元,
则m=400(x﹣2﹣10)+y(x﹣10)=400x﹣4800+(﹣100x+2400)(x﹣10)=﹣100(x﹣19)2+7300,
∴当x为19元/件时,线上和线下月利润总和达到最大,此时的最大利润为7300元.
11.(2020•滨州)某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.
(1)当售价为55元/千克时,每月销售水果多少千克?
(2)当月利润为8750元时,每千克水果售价为多少元?
(3)当每千克水果售价为多少元时,获得的月利润最大?
【分析】
(1)由月销售量=500﹣(销售单价﹣50)×10,可求解;
(2)设每千克水果售价为x元,由利润=每千克的利润×销售的数量,可列方程,即可求解;
(3)设每千克水果售价为m元,获得的月利润为y元,由利润=每千克的利润×销售的数量,可得y与x的关系式,有二次函数的性质可求解.
【解析】
(1)当售价为55元/千克时,每月销售水果=500﹣10×(55﹣50)=450千克;
(2)设每千克水果售价为x元,
由题意可得:8750=(x﹣40)[500﹣10(x﹣50)],
解得:x1=65,x2=75,
答:每千克水果售价为65元或75元;
(3)设每千克水果售价为m元,获得的月利润为y元,
由题意可得:y=(m﹣40)[500﹣10(m﹣50)]=﹣10(m﹣70)2+9000,
∴当m=70时,y有最大值为9000元,
答:当每千克水果售价为70元时,获得的月利润最大值为9000元.
12.(2020•甘孜州)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.
(1)求k,b的值;
(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.
【分析】
(1)利用待定系数法可求解析式;
(2)由销售该商品每周的利润w=销售单价×销售量,可求函数解析式,由二次函数的性质可求解.
【解析】
(1)由题意可得:30=50k+b10=70k+b,
∴k=−1b=80,
答:k=﹣1,b=80;
(2)∵w=(x﹣40)y=(x﹣40)(﹣x+80)=﹣(x﹣60)2+400,
∴当x=60时,w有最大值为400元,
答:销售该商品每周可获得的最大利润为400元.
13.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.
(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).
(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)
【分析】
(1)分别得出当0<x≤12时和当12<x≤20时,z关于x的函数解析式即可得出答案;
(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,可得出w关于x的一次函数,根据一次函数的性质可得相应的最大值;②当12<x≤20时,可得出w关于x的二次函数,根据二次函数的性质可得相应的最大值.取①②中较大的最大值即可.
【解析】
(1)由图可知,当0<x≤12时,z=16,
当12<x≤20时,z是关于x的一次函数,设z=kx+b,
则12k+b=16,20k+b=14,
解得:k=−14,b=19,
∴z=−14x+19,
∴z关于x的函数解析式为z=16,(0<x≤12)z=−14x+19,(12<x≤20).
(2)设第x个生产周期工厂创造的利润为w万元,
①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,
∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);
②当12<x≤20时,
w=(−14x+19﹣10)(5x+40)
=−54x2+35x+360
=−54(x﹣14)2+605,
∴当x=14时,w最大值=605(万元).
综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.
14.(2020•黔东南州)黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.
(1)甲、乙两种商品的进货单价分别是多少?
(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:
请写出当11≤x≤19时,y与x之间的函数关系式.
(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?
【分析】
(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得关于a、b的二元一次方程组,求解即可.
(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可.
(3)根据利润等于每件的利润乘以销售量列出函数关系式,然后写成顶点式,按照二次函数的性质可得答案.
【解析】
(1)设甲、乙两种商品的进货单价分别是a、b元/件,由题意得:
3a+2b=602a+3b=65,
解得:a=10b=15.
∴甲、乙两种商品的进货单价分别是10、15元/件.
(2)设y与x之间的函数关系式为y=k1x+b1,将(11,18),(19,2)代入得:
11k1+b1=1819k1+b1=2,解得:k1=−2b1=40.
∴y与x之间的函数关系式为y=﹣2x+40(11≤x≤19).
(3)由题意得:
w=(﹣2x+40)(x﹣10)
=﹣2x2+60x﹣400
=﹣2(x﹣15)2+50(11≤x≤19).
∴当x=15时,w取得最大值50.
∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.
类型二抛物线型问题
15.(2022·陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段表示水平的路面,以O为坐标原点,以所在直线为x轴,以过点O垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:,该抛物线的顶点P到的距离为.
(1)求满足设计要求的抛物线的函数表达式;
(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到的距离均为,求点A、B的坐标.
【答案】(1)
(2)
【分析】(1)根据题意,设抛物线的函数表达式为,再代入(0,0),求出a的值即可;
(2)根据题意知,A,B两点的纵坐标为6,代入函数解析式可求出两点的横坐标,从而 可解决问题.
(1)
依题意,顶点,
设抛物线的函数表达式为,
将代入,得.解之,得.
∴抛物线的函数表达式为.
(2)
令,得.
解之,得.
∴.
【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的运用,解答时求出二次函数的解析式是关键.
16.如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.
(1)求抛物线的解析式及点G的坐标;
(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标yQ的取值范围.
【分析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;
(2)先求出点M,点N坐标,即可求解.
【解析】(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,
∴点B(0,c),
∵OA=OB=c,
∴点A(c,0),
∴0=﹣c2+2c+c,
∴c=3或0(舍去),
∴抛物线解析式为:y=﹣x2+2x+3,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点G为(1,4);
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴对称轴为直线x=1,
∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,
∴点M的横坐标为﹣2或4,点N的横坐标为6,
∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),
∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,
∴﹣21≤yQ≤4.
17.在平面直角坐标系xy中,已知抛物线y=-x2+bx+c经过点A(-1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求抛物线的解析式;
(2)求点P的坐标;
(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)
(2)
(3)存在,
【分析】(1)根据点的坐标,利用待定系数法即可得;
(2)先求出抛物线的对称轴,再设点的坐标为,则,根据旋转的性质可得,从而可得,将点代入抛物线的解析式求出的值,由此即可得;
(3)先根据点坐标的平移规律求出点,作点关于轴的对称点,连接,从而可得与轴的交点即为所求的点,再利用待定系数法求出直线的解析式,由此即可得出答案.
(1)解:将点代入得:,
解得,
则抛物线的解析式为.
(2)解:抛物线的对称轴为直线,其顶点的坐标为,
设点的坐标为,则,
由旋转的性质得:,
,即,
将点代入得:,
解得或(舍去),
当时,,
所以点的坐标为.
(3)解:抛物线的顶点的坐标为,
则将其先向左平移1个单位长度,再向下平移4个单位长度恰好落在原点,
这时点落在点的位置,且,
,即,恰好在对称轴直线上,
如图,作点关于轴的对称点,连接,
则,
由两点之间线段最短可知,与轴的交点即为所求的点,此时的值最小,即的值最小,
由轴对称的性质得:,
设直线的解析式为,
将点代入得:,
解得,
则直线的解析式为,
当时,,
故在轴上存在点,使得的值最小,此时点的坐标为.
【点睛】本题考查了求二次函数的解析式、二次函数的图象与性质、旋转的性质、点坐标的平移规律等知识点,熟练掌握待定系数法和二次函数的图象与性质是解题关键.
18.已知函数(,为常数)的图象经过点.
(1)求,满足的关系式;
(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;
(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
【答案】(1)c=2b(2)(3)2或6
【解析】
【分析】
(1)把点代入函数即可得到结论;
(2)根据顶点坐标即可求解;
(3)把函数化为,根据图像不经过第三象限进行分类讨论进行求解.
【详解】
(1)将点代入,
得,
∴;
(2),,
∴,
∴,
(3),
对称轴,
当时,,函数不经过第三象限,则;
此时,当时,函数最小值是0,最大值是25,
∴最大值与最小值之差为25;(舍去)
当时,,函数不经过第三象限,则,
∴,
∴,
当时,函数有最小值,
当时,函数有最大值,
当时,函数有最大值;
函数的最大值与最小值之差为16,
当最大值时,,
∴或,
∵,
∴;
当最大值时,,
∴或,
∵,
∴;
综上所述或;
【点睛】
此题主要考查二次函数综合,解题的关键是熟知二次函数的图像与性质.
19.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是.
(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;
(2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处.有一名身高的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);
(3)如图③,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围.
【答案】(1)y=x2+2x(0≤x≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m≤8
【分析】
(1)设二次函数的解析式为:y=a(x-8)x,根据待定系数法,即可求解;
(2)把:x =1,代入y=x2+2x,得到对应的y值,进而即可得到结论;
(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m的范围.
【详解】
(1)根据题意得:A(8,0),B(4,4),
设二次函数的解析式为:y=a(x-8)x,
把(4,4)代入上式,得:4=a×(4-8)×4,解得:,
∴二次函数的解析式为:y= (x-8)x=x2+2x(0≤x≤8);
(2)由题意得:x=0.4+1.2÷2=1,代入y=x2+2x,得y=×12+2×1=>1.68,
答:他的头顶不会触碰到桥拱;
(3)由题意得:当0≤x≤8时,新函数表达式为:y=x2-2x,
当x<0或x>8时,新函数表达式为:y=-x2+2x,
∴新函数表达式为:,
∵将新函数图象向右平移个单位长度,
∴(m,0),(m+8,0),(m+4,-4),如图所示,
根据图像可知:当m+4≥9且m≤8时,即:5≤m≤8时,平移后的函数图象在时,的值随值的增大而减小.
【点睛】
本题主要考查二次函数的实际应用,掌握二次函数的待定系数法,二次函数的图像和性质,二次函数图像平移和轴对称变换规律,是解题的关键.
20.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围.
【答案】(1);(2)12米;(3).
【分析】
(1)根据题意可知:点A(0,4)点B(4,8),利用待定系数法代入抛物线即可求解;
(2)高度差为1米可得可得方程,由此即可求解;
(3)由抛物线可知坡顶坐标为 ,此时即当时,运动员运动到坡顶正上方,若与坡顶距离超过米,即,由此即可求出b的取值范围.
【详解】
解:(1)根据题意可知:点A(0,4),点B(4,8)代入抛物线得,
,
解得:,
∴抛物线的函数解析式;
(2)∵运动员与小山坡的竖直距离为米,
∴,
解得:(不合题意,舍去), ,
故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为米;
(3)∵点A(0,4),
∴抛物线,
∵抛物线,
∴坡顶坐标为 ,
∵当运动员运动到坡顶正上方,且与坡顶距离超过米时,
∴,
解得:.
【点睛】
本题属二次函数应用中的难题.解决函数应用问题的一般步骤为:(1)审题:弄清题意,分清条件和结论,理清数量关系;(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型;(3)求模:求解数学模型,得到数学结论;(4) 还原:将用数学方法得到的结论还原为实际问题.
类型三几何图形问题
21.(2020•无锡)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.
(1)当x=5时,求种植总成本y;
(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;
(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.
【分析】(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×12(EH+AD)×20x+2×12(GH+CD)×x×60+EF•EH×40,即可求解;
(2)参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40(0<x<10);
(3)S甲=2×12(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,S乙=﹣2x2+40x,则﹣2x2+60x﹣(﹣2x2+40x)≤120,即可求解.
【解析】(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,
y=2×12(EH+AD)×20x+2×12(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;
(2)EF=20﹣2x,EH=30﹣2x,
参考(1),由题意得:y=(30×30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);
(3)S甲=2×12(EH+AD)×2x=(30﹣2x+30)x=﹣2x2+60x,
同理S乙=﹣2x2+40x,
∵甲、乙两种花卉的种植面积之差不超过120米2,
∴﹣2x2+60x﹣(﹣2x2+40x)≤120,
解得:x≤6,
故0<x≤6,
而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,
即三种花卉的最低种植总成本为21600元.
22.(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.
(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.
(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:2取1.4)
【分析】
(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;
(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=62=8.4,即可求解.
【解析】
(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,
将x=0,y=1.9代入上式并解得:a=−150,
故抛物线的表达式为:y=−150(x﹣7)2+2.88;
当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,
当x=18时,y=−150(x﹣7)2+2.88=0.46>0,
故这次发球过网,但是出界了;
(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,
在Rt△OPQ中,OQ=18﹣1=17,
当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),
∴OP=19,而OQ=17,
故PQ=62=8.4,
∵9﹣8.4﹣0.5=0.1,
∴发球点O在底线上且距右边线0.1米处.
23.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求
(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;
(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.
【解析】解:(1)设PQ=y,则PN=2y,
∵四边形PQMN是矩形,
∴PN∥BC,
∴△APN∽△ABC,
∵AD⊥BC,
∴AD⊥PN,
∴=,即=,
解得y=,
∴PQ=,PN=.
(2)设AE=x.
∵四边形PQMN是矩形,
∴PN∥BC,
∴△APN∽△ABC,
∵AD⊥BC,
∴AD⊥PN,
∴=,
∴PN=x,PQ=DE=10﹣x,
∴S矩形PQMN=x(10﹣x)=﹣(x﹣5)2+30,
∴当x=5时,S的最大值为30,
∴当AE=5时,矩形PQMN的面积最大,最大面积是30,
此时PQ=5,PN=6.
24.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,AD上,AH=2,连接CF.
(1)当四边形EFGH为正方形时,求DG的长;
(2)当DG=6时,求△FCG的面积;
(3)求△FCG的面积的最小值.
【解析】解:(1)∵四边形EFGH为正方形,
∴HG=HE,∠EAH=∠D=90°,
∵∠DHG+∠AHE=90°,
∠DHG+∠DGH=90°,
∴∠DGH=∠AHE,
∴△AHE≌△DGH(AAS),
∴DG=AH=2;
(2)过F作FM⊥DC,交DC延长线于M,连接GE,
∵AB∥CD,
∴∠AEG=∠MGE,
∵HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠MGF,
在△AHE和△MFG中,∠A=∠M=90°,HE=FG,
∴△AHE≌△MFG(AAS),
∴FM=HA=2,
即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,
因此S△FCG=×FM×GC=×2×(7-6)=1;
(3)设DG=x,则由(2)得,S△FCG=7-x,
在△AHE中,AE≤AB=7,
∴HE2≤53,
∴x2+16≤53,
∴x≤,
∴S△FCG的最小值为7-,此时DG=,
∴当DG=时,△FCG的面积最小为(7-).
25.某公司对办公大楼一块墙面进行如图所示的图案设计.这个图案由四个全等的直角三角形和一个小正方形拼接而成的大正方形,设小正方形的边长m,直角三角形较短边长n,且n=2m﹣4,大正方形的面积为S.
(1)求S关于m的函数关系式.
(2)若小正方形边长不大于3,当大正方形面积最大时,求m的值.
【解析】解:(1)∵小正方形的边长m,直角三角形较短边长n,
∴直角三角形较长边长为m+n,
∴由勾股定理得:S=(m+n)2+n2,
∵n=2m﹣4,
∴S=(m+2m﹣4)2+(2m﹣4)2,
=13m2﹣40m+32,
∵n=2m﹣4>0,
∴m>2,
∴S关于m的函数关系式为S=13m2﹣40m+32(m>2);
(2)∵S=13m2﹣40m+32(2<m≤3),
∴S=13(m-)2+
∵m≥时,S随x的增大而增大,
∴m=3时,S取最大.
∴m=3.
26..[问题提出]
(1)如图①,在中,为上一点,则面积的最大值是
(2)如图②,已知矩形的周长为,求矩形面积的最大值
[实际应用]
(3)如图③,现有一块四边形的木板余料,经测量且木匠师傅从这块余料中裁出了顶点在边上且面积最大的矩形求该矩形的面积
【解析】解:(1)过点A作AE⊥BC,如图所示:
∴,
∵D为BC上一点,
∴,
∴要使△ABC的面积最大,则需满足AD=AE,
∵BC=6,AD=4,
∴△ABC的面积最大为:;
故答案为12;
(2)∵四边形ABCD是矩形,
∴AB=DC,AD=BC,
∵矩形ABCD的周长是12,
∴设AB=x,则有AD=6-x,矩形ABCD的面积为S,则有:
,
此函数为二次函数,由,二次函数的开口向下,
∴当x=3时,矩形ABCD的面积有最大值为:;
(3)如图所示:
∵四边形PQMN是矩形,
∴QM=PN,PQ=MN,∠QMN=∠PNM=90°,
∵∠B=∠C=60°,∠QMB=∠PNC=90°,
∴△BMQ≌△CNP,
∴BM=NC,
设BM=NC=x,则有MN=PQ=80-2x,
∴,
∴,
此函数关系为二次函数,由可得开口向下,
∴当x=20时,矩形PQMN的面积有最大,即.
27.如图,已知,是线段上的两点,,,,以为中心顺时针旋转点,以为中心逆时针旋转点,使,两点重合成一点,构成,设.
(1)求的取值范围;
(2)求面积的最大值.
【解析】解:(1)∵,,,
∴.
由旋转的性质,得,,
由三角形的三边关系,得
解不等式①得,
解不等式②得,
∴的取值范围是.
(2)如图,过点作于点,
设,由勾股定理,得,,
∵,
∴,两边平方并整理,得,两边平方整理,得.
∵的面积为,
∴,
∴当时,面积最大值的平方为,
∴面积的最大值为.
28.如图①,在△ABC中,∠C=90°,AB=10,BC=8.点D,E分别是边AC,BC上的动点,连接DE.设CD=x(x>0),BE=y,y与x之间的函数关系如图②所示.
(1)求出图②中线段PQ所在直线的函数表达式;
(2)将△DCE沿DE翻折,得△DME.
①点M是否可以落在△ABC的某条角平分线上?如果可以,求出相应x的值;如果不可以,说明理由;
②直接写出△DME与△ABC重叠部分面积的最大值及相应x的值.
【解析】解:(1)设线段PQ所在直线的函数表达式为y=kx+b,
将P(3,4)和Q(6,0)代入得,
,解得,
∴线段PQ所在直线的函数表达式为;
(2)①如图1,
连接CM并延长CM交AB于点F,
∵∠C=90°,AB=10,BC=8,
∴AC==6,
由(1)得BE=,
∴CE=,
∴,
∵∠DCE=∠ACB,
∴△DCE∽△ACB,
∴∠DEC=∠ABC,
∴DE//AB,
∵点C和点M关于直线DE对称,
∴CM⊥DE,
∴CF⊥AB,
∵,
∴6×8=10×CF,
∴CF=,
∵∠C=90°,CD=x,CE=,
∴DE=,
∴CM=,MF=,
过点M作MG⊥AC于点M,过点M作MH⊥BC于点H,
则四边形GCHM为矩形,
∵∠GCM+∠BCF=∠BCF+∠ABC=90°,
∴∠GCM=∠ABC,
∵∠MGC=∠ACB=90°,
∴△CGM∽△BCA,
∴,
即,
∴MG=,CG=,
∴MH=,
(Ⅰ)若点M落在∠ACB的平分线上,则有MG=MH,即,解得x=0(不合题意舍去),
(Ⅱ)若点M落在∠BAC的平分线上,则有MG=MF,即,解得x=,
(Ⅲ)若点M落在∠ABC的平分线上,则有MH=MF,即,解得x=.
综合以上可得,当x=或x=时,点M落在△ABC的某条角平分线上.
②当0<x≤3时,点M不在三角形外,△DME与△ABC重叠部分面积为△DME的面积,
∴,
当x=3时,S的最大值为.
当3<x≤6时,点M在三角形外,如图2,
由①知CM=2CQ=,
∴MT=CM﹣CF=,
∵PK//DE,
∴△MPK∽△MDE,
∴ ,
∴,
∵,
∴,
即:,
∴当x=4时,△DME与△ABC重叠部分面积的最大值为8.
综合可得,当x=4时,△DME与△ABC重叠部分面积的最大值为8.
进货批次
A型水杯(个)
B型水杯(个)
总费用(元)
一
100
200
8000
二
200
300
13000
购票方式
甲
乙
丙
可游玩景点
和
门票价格
100元/人
80元/人
160元/人
x(元/件)
12
13
14
15
16
y(件)
1200
1100
1000
900
800
销售单价x(元/件)
11
19
日销售量y(件)
18
2
相关试卷
这是一份中考数学复习重难题型真题再现(全国通用)专题14反比例函数性质综合特训(原卷版+解析),共57页。
这是一份中考数学复习重难题型真题再现(全国通用)专题13一次函数与几何图形综合题(函数与面积、与其他有关)特训(原卷版+解析),共32页。
这是一份中考数学复习重难题型真题再现(全国通用)专题11一次函数性质综合特训(原卷版+解析),共41页。