所属成套资源:中考数学复习重难题型真题再现(全国通用)专题特训(原卷版+解析)
- 中考数学复习重难题型真题再现(全国通用)专题21二次函数与几何图形综合题(与特殊三角形问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题23二次函数与几何图形综合题(与特殊四边形有关问题)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题25几何探究以四边形的性质为背景(动点、平移、旋转、折叠)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题26几何探究以三角形为背景(动点、平移、旋转、折叠)特训(原卷版+解析) 试卷 0 次下载
- 中考数学复习重难题型真题再现(全国通用)专题28圆的综合探究特训(原卷版+解析) 试卷 0 次下载
中考数学复习重难题型真题再现(全国通用)专题24二次函数与几何图形综合题(与圆有关问题)特训(原卷版+解析)
展开
这是一份中考数学复习重难题型真题再现(全国通用)专题24二次函数与几何图形综合题(与圆有关问题)特训(原卷版+解析),共44页。试卷主要包含了,连结BC、BE、CE.等内容,欢迎下载使用。
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求的最小值;
(3)如图2,点D是第四象限内抛物线上一动点,过点D作轴,垂足为F,的外接圆与相交于点E.试问:线段的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
2.(2021·四川自贡市·中考真题)如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
(1)直接写出的度数和线段AB的长(用a表示);
(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
3.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;
(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.
(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
4.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.
5.(2021·湖南中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.
(1)求二次函数的表达式;
(2)求顶点的坐标及直线的表达式;
(3)判断的形状,试说明理由;
(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
6.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于12AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 ,其理由为: .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,3),C(1,3),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
7.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
(1)求⊙C的标准方程;
(2)试判断直线AE与⊙C的位置关系,并说明理由.
8.(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
9.(2020·山东德州?中考真题)如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.
10.(2020·江苏苏州?中考真题)如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
(3)求四边形的面积.
11.(2020·山东济宁?中考真题)我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
x
…
0
1
2
3
…
y
…
0
3
4
3
0
…
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(0,﹣1)
(2,﹣2)
…
M的坐标
…
…
P的坐标
…
…
专题24二次函数与几何图形综合题(与圆有关问题)
1.(2021·四川广元市·中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点的坐标值:
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求的最小值;
(3)如图2,点D是第四象限内抛物线上一动点,过点D作轴,垂足为F,的外接圆与相交于点E.试问:线段的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
【答案】(1);;(2);(3)是,1.
【分析】
(1)依据表格数据,设出抛物线的顶点式,利用待定系数法求解即可;
(2)利用平移和找对称点的方式,将的长转化为,再利用两点之间线段最短确定的最小值等于CE的长,加1后即能确定的最小值;
(3)设出圆心和D点的坐标,接着表示出E点的坐标,利用圆心到B点的距离等于圆心到D点的距离,求出q和e的关系,得到E点的纵坐标,进而确定EF的长为定值.
【详解】
解:(1)由表格数据可知,顶点坐标为(1,4)
设抛物线解析式为:,
将点(0,3)代入解析式得:3=a+4,
∴,
∴抛物线解析式为:,顶点坐标.
(2)由表格可知,抛物线经过点A(-1,0),C(0,3),
如图3,将A点向上平移一个单位,得到,
则
∴四边形是平行四边形,
∴,
作关于MQ的对称点E,则
∴,
∴,
当P、E、C三点共线时,最短,
设直线CE的解析式为:,
将C、E两点坐标代入解析式可得:,
∴,
∴直线CE的解析式为:,
令,则,
∴当时,P、E、C三点共线,此时最短,
∴的最小值为.
(3)是;
理由:设,
因为A、B两点关于直线x=1对称,
所以圆心位于该直线上,
所以可设的外接圆的圆心为,
作,垂足为点N,则,
由轴,
∴,
∵,且由表格数据可知
∴,
化简得:,
∵点D是第四象限内抛物线上一动点,且抛物线解析式为,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
即的长不变,为1.
【点睛】
本题涉及到了动点问题,综合考查了用待定系数法求抛物线解析式、点的平移、勾股定理、平行四边形的判定与性质、最短路径问题、圆的性质等内容,解决本题的关键是理解并掌握相关概念与公式,能将题干信息与图形相结合,挖掘图中隐含信息,本题有一定的计算量,对学生的综合分析与计算能力都有较高的要求,本题蕴含了数形结合的思想方法等.
2.(2021·四川自贡市·中考真题)如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.
(1)直接写出的度数和线段AB的长(用a表示);
(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;
(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1)∠OCA=45°,AB= a+1;(2);(3)存在,P1(,),P2(1,-2).
【分析】
(1)根据二次函数解析式可得A(a,0),C(0,-a),B(-1,0),即可得出OA=OB=a,OB=1,即可证明△OCA是等腰直角三角形,可得∠OCA=45°,根据线段的和差关系可表示AB的长;
(2)如图,作△ABC的外接圆⊙D,根据等腰直角三角形的性质可得AC=,利用两点间距离公式可用a表示出BC的长,根据圆周角定理可得∠D=2∠OAC=90°,可得△DBC是等腰直角三角形,即可证明△DBC∽△OCA,根据相似三角形周长之比等于相似比列方程求出a值即可得答案;
(3)如图,过点D作DH⊥AB于H,过点C作AC的垂线,交x轴于F,过点O作OG⊥AC于G,连接AP交CF于E,可得△OCF是等腰直角三角形,利用待定系数法可得直线CF的解析式,根据外心的定义及等腰直角三角形的性质可求出点D坐标,即可得出BH、DH的长,根据,∠BHD=∠ACE=90°可证明△BHD∽△ACE,根据相似三角形的性质可求出CE的长,根据两点间距离公式可得点E坐标,利用待定系数法可得直线AE解析式,联立直线AE与抛物线的解析式求出点P坐标即可得答案.
【详解】
(1)∵抛物线(其中)与x轴交于A、B两点,交y轴于点C.
∴当x=0时,y=-a,
当y=0时,,
解得:,,
∴A(a,0),C(0,-a),B(-1,0),
∴OB=1,OA=OC=a,
∴△OCA是等腰直角三角形,
∴∠OCA=45°,AB=OA+OB=a+1.
(2)如图,作△ABC的外接圆⊙D,
∵点D为的外心,
∴DB=DC,
∵△OCA是等腰直角三角形,OA=a,
∴∠OAC=45°,AC=,
∵∠BDC和∠BAC是所对的圆心角和圆周角,
∴∠BDC=2∠BAC=90°,
∴∠DBC=45°,
∴∠DBC=∠OAC,
∴△DBC∽△OCA,
∵与的周长之比为,
∴,即,
解得:,
经检验:是原方程的根,
∵,
∴a=2,
∴抛物线解析式为:=.
(3)如图,过点D作DH⊥AB于H,过点C作AC的垂线,交x轴于F,过点O作OG⊥AC于G,连接AP交CF于E,
∵a=2,
∴C(0,-2),A(2,0),AC=,
∵∠OCA=45°,
∴∠OCF=45°,
∴△OCF是等腰直角三角形,
∴F(-2,0),
设直线CF的解析式为y=kx+b,
∴,
解得:,
∴直线CF的解析式为,
∵△OCA是等腰直角三角形,OG⊥AC,
∴OG所在直线为AC的垂直平分线,点G为AC中点,
∵点D为的外心,
∴点D在直线OG上,
∵A(2,0),C(0,-2),
∴G(1,-1),
设直线OG的解析式y=mx,
∴m=-1,
∴直线OG的解析式y=-x,
∵点D为△ABC的外心,
∴点D在AB的垂直平分线上,
∴点D的横坐标为=,
把x=代入y=-x得y=-,
∴D(,-),
∴DH=,BH=1+=,
∵,∠BHD=∠ACE=90°,
∴△BHD∽△ACE,
∴,即,
解得:,
∵点E在直线CF上,
∴设点E坐标为(n,-n-2),
∴CE==,
解得:,
∴(,),(,),
设直线AE1的解析式为y=k1x+b1,
∴,
解得:,
∴直线AE1的解析式为,
同理:直线AE2的解析式为,
联立直线AE1解析式与抛物线解析式得,
解得:,(与点A重合,舍去),
∴P1(,),
联立直线AE2解析式与抛物线解析式得,
解得:,(与点A重合,舍去),
∴P2(1,-2).
综上所述:存在点P,使得,点P坐标为P1(,),P2(1,-2).
【点睛】
本题考查二次函数的综合,考查了二次函数的性质、待定系数法求一次函数解析式、圆周角定理、等腰三角形的性质、相似三角形的判定与性质,熟练掌握相关性质及定理是解题关键.
3.(2021·四川中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.
(1)求抛物线的解析式;
(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.
(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由;
【答案】(1);(2);(3)存在,点的横坐标分别为:2,,或.
【分析】
(1)待定系数法求二次函数解析式,设解析式为将,两点代入求得,c的值即可;
(2)胡不归问题,要求的值,将折线化为直线,构造相似三角形将转化为,再利用三角形两边之和大于第三边求得最值;
(3)分2种情形讨论:①AB为矩形的一条边,利用等腰直角三角形三角形的性质可以求得N点的坐标;
②AB为矩形的对角线,设R为AB的中点,RN=AB,利用两点距离公式求解方程可得N点的坐标.
【详解】
解:(1)∵过,
∴
∴,
∴抛物线的解析式为:
(2)在上取一点,使得,连接,
∵
对称轴.
∴,
,
∴,
∴
∴
∴
当,,三点在同一点直线上时,最小为.
在中,,
∴
即最小值为.
(3)情形①如图,AB为矩形的一条边时,
联立
得
是等腰,
分别过 两点作的垂线,交于点,
过作轴,轴,
,也是等腰直角三角形
设,则,所以
代入,解得,(不符题意,舍)
同理,设,则 ,所以
代入,解得,(不符题意,舍)
② AB为矩形的对角线,设R为AB的中点,则
,
设 ,则
整理得:
解得:(不符题意,舍),(不符题意,舍),
,
综上所述:点的横坐标分别为:2,,或.
【点睛】
本题考查了二次函数的性质,待定系数法求解析式,三角形相似,勾股定理,二次函数与一次函数交点,矩形的性质,等腰直角三角形性质,平面直角坐标系中两点距离计算等知识,能正确做出辅助线,找到相似三角形是解题的关键.
4.(2021·四川中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别交于A、B两点,与y轴交于点C(0,6),抛物线的顶点坐标为E(2,8),连结BC、BE、CE.
(1)求抛物线的表达式;
(2)判断△BCE的形状,并说明理由;
(3)如图2,以C为圆心,为半径作⊙C,在⊙C上是否存在点P,使得BP+EP的值最小,若存在,请求出最小值;若不存在,请说明理由.
【答案】(1)y=x2+2x+6;(2)直角三角形,见解析;(3)存在,
【分析】
(1)用待定系数法求函数解析式;
(2)分别求出三角形三边的平方,然后运用勾股定理逆定理即可证明;
(3)在CE上截取CF=(即CF等于半径的一半),连接BF交⊙C于点P,连接EP,则BF的长即为所求.
【详解】
解:(1)∵抛物线的顶点坐标为E(2,8),
∴设该抛物线的表达式为y=a(x-2)2+8,
∵与y轴交于点C(0,6),
∴把点C(0,6)代入得:a=,
∴该抛物线的表达式为y=x2+2x+6;
(2)△BCE是直角三角形.理由如下:
∵抛物线与x轴分别交于A、B两点,
∴当y=0时,(x-2)2+8=0,解得:x1=-2,x2=6,
∴A(-2,0),B(6,0),
∴BC2=62+62=72,CE2=(8-6)2+22=8,BE2=(6-2)2+82=80,
∴BE2=BC2+CE2,
∴∠BCE=90°,
∴△BCE是直角三角形;
(3)如图,在CE上截取CF=(即CF等于半径的一半),连接BF交⊙C于点P,连接EP,
则BF的长即为所求.
连接CP,∵CP为半径,
∴ ,
又∵∠FCP=∠PCE,
∴△FCP∽△PCE,
∴ ,FP=EP,
∴BF=BP+EP,
由“两点之间,线段最短”可得:BF的长即BP+EP为最小值.
∵CF=CE,E(2,8),
∴F(,),
∴BF=
【点睛】
本题考查二次函数综合,待定系数法,二次函数图象和性质,勾股定理及其逆定理,圆的性质,相似三角形的判定和性质等,题目综合性较强,属于中考压轴题,熟练掌握二次函数图象和性质,圆的性质,相似三角形的判定和性质等相关知识是解题关键.
5.(2021·湖南中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点.
(1)求二次函数的表达式;
(2)求顶点的坐标及直线的表达式;
(3)判断的形状,试说明理由;
(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值.
【答案】(1);(2),;(3)等腰直角三角形,理由见解析;(4)
【分析】
(1)根据已知条件,运用待定系数法直接列方程组求解即可;
(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A、B坐标求出AB解析式即可;
(3)根据二次函数对称性可知为等腰三角形,再根据O、A、B三点坐标,求出三条线段的长,利用勾股定理验证即可;
(4)根据题意可知动点的运动时间为,在上取点,使,可证明,根据相似三角形比例关系得,即,当、、三点共线时,取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.
【详解】
解:(1)二次函数的图象经过,且与轴交于原点及点
∴,二次函数表达式可设为:
将,代入得:
解这个方程组得
∵二次函数的函数表达式为
(2)∵点为二次函数图像的顶点,
∴,
∴顶点坐标为:,
设直线的函数表达式为,则有:
解之得:
∴直线的函数表达式为
(3)是等腰直角三角形,
过点作于点,易知其坐标为
∵的三个顶点分别是,,,
∴,
且满足
∴是等腰直角三角形
(4)如图,以为圆心,为半径作圆,则点在圆周上,依题意知:
动点的运动时间为
在上取点,使,
连接,则在和中,
满足:,,
∴,
∴,
从而得:
∴
显然当、、三点共线时,取得最小值,
过点作于点,由于,
且为等腰直角三角形,
则有,,
∴动点的运动时间的最小值为:
.
【点睛】
本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.
6.(2020•德州)如图1,在平面直角坐标系中,点A的坐标是(0,﹣2),在x轴上任取一点M,连接AM,分别以点A和点M为圆心,大于12AM的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为 ,其理由为: .
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是 抛物线 .
验证:
(4)设点P的坐标是(x,y),根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点B(﹣1,3),C(1,3),点D为曲线L上任意一点,且∠BDC<30°,求点D的纵坐标yD的取值范围.
【分析】(1)由题意可得GH是AM的垂直平分线,由线段垂直平分线的性质可求解;
(2)由(1)可知:PA=PM,利用两点距离公式可求点P坐标;
(3)依照题意,画出图象;
(4)由两点距离公式可得﹣y=(x−0)2+(y+2)2,可求y关于x的函数解析式;
(5)由两点距离公式可求BC=OB=OC,可证△BOC是等边三角形,可得∠BOC=60°,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,可得∠BEC=30°,则当点D在点E下方时,∠BDC<30°,求出点E的纵坐标即可求解.
【解析】(1)∵分别以点A和点M为圆心,大于12AM的长为半径作弧,两弧相交于G,H两点,
∴GH是AM的垂直平分线,
∵点P是GH上一点,
∴PA=PM(线段垂直平分线上的点与这条线段两个端点的距离相等),
故答案为:PA=PM,线段垂直平分线上的点与这条线段两个端点的距离相等;
(2)当点M(﹣2,0)时,设点P(﹣2,a),(a<0)
∵PA=PM,
∴﹣a=(−2−0)2+(a+2)2,
∴a=﹣2,
∴点P(﹣2,﹣2),
当点M(4,0)时,设点P(4,b),(b<0)
∵PA=PM,
∴﹣b=(4−0)2+(b+2)2,
∴b=﹣5,
∴点P(4,﹣5),
故答案为:(﹣2,﹣2),(4,﹣5);
(3)依照题意,画出图象,
猜想曲线L的形状为抛物线,
故答案为:抛物线;
(4)∵PA=PM,点P的坐标是(x,y),(y<0),
∴﹣y=(x−0)2+(y+2)2,
∴y=−14x2﹣1;
(5)∵点B(﹣1,3),C(1,3),
∴BC=2,OB=(−1−0)2+(3−0)2=2,OC=(1−0)2+(3−0)2=2,
∴BC=OB=OC,
∴△BOC是等边三角形,
∴∠BOC=60°,
如图3,以O为圆心,OB为半径作圆O,交抛物线L与点E,连接BE,CE,
∴∠BEC=30°,
设点E(m,n),
∵点E在抛物线上,
∴n=−14m2﹣1,
∵OE=OB=2,
∴(m−0)2+(n−0)2=2,
∴n1=2﹣23,n2=2+23(舍去),
如图3,可知当点D在点E下方时,∠BDC<30°,
∴点D的纵坐标yD的取值范围为yD<2﹣23.
7.(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.
(1)求⊙C的标准方程;
(2)试判断直线AE与⊙C的位置关系,并说明理由.
【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt△BCM中,利用勾股定理求出半径以及等C的坐标即可解决问题.
(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.
【解析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.
∵与y轴相切于点D(0,4),
∴CD⊥OD,
∵∠CDO=∠CMO=∠DOM=90°,
∴四边形ODCM是矩形,
∴CM=OD=4,CD=OM=r,
∵B(8,0),
∴OB=8,
∴BM=8﹣r,
在Rt△CMB中,∵BC2=CM2+BM2,
∴r2=42+(8﹣r)2,
解得r=5,
∴C(5,4),
∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.
(2)结论:AE是⊙C的切线.
理由:连接AC,CE.
∵CM⊥AB,
∴AM=BM=3,
∴A(2,0),B(8,0)
设抛物线的解析式为y=a(x﹣2)(x﹣8),
把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=14,
∴抛物线的解析式为y=14(x﹣2)(x﹣8)=14x2−52x+4=14(x﹣5)2−94,
∴抛物线的顶点E(5,−94),
∵AE=32+(94)2=154,CE=4+94=254,AC=5,
∴EC2=AC2+AE2,
∴∠CAE=90°,
∴CA⊥AE,
∴AE是⊙C的切线.
8.(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.
(1)求该抛物线的解析式;
(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.
【分析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2+94x+c求出a与c的值即可得出抛物线的解析式;
(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=32,tan60°=QHOH,求出Q(332,32),把x=332代入y=−34x2+94x+3,得y=2738−3316≠32,则假设不成立;
②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=32,tan60°=QTOT,求出Q(−332,32),把x=−332代入y=−34x2+94x+3,得y=−2738−3316≠32,则假设不成立;
(3)求出B(4,0),待定系数法得出BC直线的解析式y=−34x+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=34x2−94x﹣3,MD=34x﹣3,代入即可得出结果.
【解析】(1)把点A(﹣1,0)和点C (0,3)代入y=ax2+94x+c得:0=a−94+c3=c,
解得:a=−34c=3,
∴抛物线的解析式为:y=−34x2+94x+3;
(2)不存在,理由如下:
①当点Q在y轴右边时,如图1所示:
假设△QCO为等边三角形,
过点Q作QH⊥OC于H,
∵点C (0,3),
∴OC=3,
则OH=12OC=32,tan60°=QHOH,
∴QH=OH•tan60°=32×3=332,
∴Q(332,32),
把x=332代入y=−34x2+94x+3,
得:y=2738−3316≠32,
∴假设不成立,
∴当点Q在y轴右边时,不存在△QCO为等边三角形;
②当点Q在y轴的左边时,如图2所示:
假设△QCO为等边三角形,
过点Q作QT⊥OC于T,
∵点C (0,3),
∴OC=3,
则OT=12OC=32,tan60°=QTOT,
∴QT=OT•tan60°=32×3=332,
∴Q(−332,32),
把x=−332代入y=−34x2+94x+3,
得:y=−2738−3316≠32,
∴假设不成立,
∴当点Q在y轴左边时,不存在△QCO为等边三角形;
综上所述,在抛物线上不存在一点Q,使得△QCO是等边三角形;
(3)令−34x2+94x+3=0,
解得:x1=﹣1,x2=4,
∴B(4,0),
设BC直线的解析式为:y=kx+b,
把B、C的坐标代入则0=4k+b3=b,
解得:k=−34b=3,
∴BC直线的解析式为:y=−34x+3,
当M在线段BC上,⊙M与x轴相切时,如图3所示:
延长PM交AB于点D,
则点D为⊙M与x轴的切点,即PM=MD,
设P(x,−34x2+94x+3),M(x,−34x+3),
则PD=−34x2+94x+3,MD=−34x+3,
∴(−34x2+94x+3)﹣(−34x+3)=−34x+3,
解得:x1=1,x2=4(不合题意舍去),
∴⊙M的半径为:MD=−34+3=94;
当M在线段BC上,⊙M与y轴相切时,如图4所示:
延长PM交AB于点D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,−34x2+94x+3),M(x,−34x+3),
则PD=−34x2+94x+3,MD=−34x+3,
∴(−34x2+94x+3)﹣(−34x+3)=x,
解得:x1=83,x2=0(不合题意舍去),
∴⊙M的半径为:EM=83;
当M在BC延长线,⊙M与x轴相切时,如图5所示:
点P与A重合,
∴M的横坐标为﹣1,
∴⊙M的半径为:M的纵坐标的值,
即:−34×(﹣1)+3=154;
当M在CB延长线,⊙M与y轴相切时,如图6所示:
延长PD交x轴于D,过点M作ME⊥y轴于E,
则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,
设P(x,−34x2+94x+3),M(x,−34x+3),
则PD=34x2−94x﹣3,MD=34x﹣3,
∴(34x2−94x﹣3)﹣(34x﹣3)=x,
解得:x1=163,x2=0(不合题意舍去),
∴⊙M的半径为:EM=163;
综上所述,⊙M的半径为94或83或154或163.
9.(2020·山东德州?中考真题)如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
探究:
(1)线段PA与PM的数量关系为________,其理由为:________________.
(2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
猜想:
(3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
验证:
(4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
应用:
(5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.
【答案】(1),线段垂直平分线上的点与这条线段两个端点的距离相等;(2)图见解析,抛物线;(3)见解析;(4);(5)
【解析】
【分析】
(1)由尺规作图的步骤可知,HG是AM的中垂线,结合中垂线的性质,即可得到答案;
(2)根据第(1)的作图方法,得到相应点P的位置,即可求解;
(3)用平滑的曲线作出图象,即可;
(4)过点P作轴于点E,用含x,y的代数式表示,,,结合勾股定理,即可得到答案;
(5)连接,由题意得当时,在的外接圆上,弧所对的圆心角为60°,的外接圆圆心为坐标原点O,设,求出b的值,进而即可求解.
【详解】
解:(1) 线段垂直平分线上的点与这条线段两个端点的距离相等
(2)
(3)草图见图2:形状:抛物线
(4)如图1,过点P作轴于点E,
,,
在中,
即
化简,得
∴y关于x的函数解析式为.
(5)连接,易得,又
∴为等边三角形,∴
当时,在的外接圆上,弧所对的圆心角为60°
其圆心在的垂直平分线y轴上,
∴的外接圆圆心为坐标原点O,
设,则,即 ①
又点D在该抛物线上
∴ ②
由①②联立解得:(舍去)
数形结合可得,
当时,点D的纵坐标的取值范围为
【点睛】
本题主要考查尺规作作中垂线,二次函数的图象和性质,圆周角定理,解题关键是:熟练掌握垂直平分线的性质定理,构造三角形的外接圆.
10.(2020·江苏苏州?中考真题)如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出的值;若不存在,说明理由.
(3)求四边形的面积.
【答案】(1)8cm;(2)存在,当t=4时,线段OB的长度最大,最大为;(3)
【解析】
【分析】
(1)根据题意可得,,由此可求得的值;
(2)过作,垂足为,则,设线段的长为,可得,,,根据可得,进而可得,由此可得,由此可得,则可得到答案;
(3)先证明是等腰直角三角形,由此可得,再利用勾股定理可得,最后根据四边形的面积即可求得答案.
【详解】
解:(1)由题可得:,.
∴.
(2)当时,线段的长度最大.
如图,过作,垂足为,则.
∵平分,
∴,
∴,.
设线段的长为,
则,,.
∵,
∴,
∴,
∴,
解得:.
∴.
∴当时,线段的长度最大,最大为.
(3)∵,
∴是圆的直径.
∴.
∵,
∴是等腰直角三角形.
∴
.
在中,.
∴四边形的面积
.
∴四边形的面积为.
【点睛】
本题考查了相似三角形的判定及性质,直径的判定及性质,二次函数的最值问题等相关知识,熟练掌握相关知识是解决本题的关键.
11.(2020·山东济宁?中考真题)我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
【答案】(1);(2)相切,理由见解析
【解析】
【分析】
(1)连接CD,CB,过C作CF⊥AB,分别表示出BF和CF,再在△BCF中利用勾股定理构造方程求解即可得到圆C半径以及点C坐标,从而得到标准方程;
(2)由(1)可得点A坐标,求出抛物线表达式,得到点E坐标,再求出直线AE的表达式,联立直线AE和圆C的表达式,通过判断方程根的个数即可得到两者交点个数,从而判断位置关系.
【详解】
解:连接CD,CB,过C作CF⊥AB,
∵点D(0,4),B(8,0),设圆C半径为r,圆C与y轴切于点D,
则CD=BC=OF=r,CF=4,
∵CF⊥AB,
∴AF=BF=8-r,
在△BCF中,,
即,
解得:r=5,
∴CD=OF=5,即C(5,4),
∴圆C的标准方程为:;
(2)由(1)可得:BF=3=AF,则OA=OB-AB=2,
即A(2,0),
设抛物线表达式为:,将A,B,D坐标代入,
,解得:,
∴抛物线表达式为:,
∴可得点E(5,),
设直线AE表达式为:y=mx+n,将A和E代入,
可得:,解得:,
∴直线AE的表达式为:,
∵圆C的标准方程为,
联立,
解得:x=2,
故圆C与直线AE只有一个交点,横坐标为2,
即圆C与直线AE相切.
【点睛】
本题考查了圆的新定义,二次函数,一次函数,切线的判定,垂径定理,有一定难度,解题的关键是利用转化思想,将求位置关系转化为方程根的个数问题.
x
…
0
1
2
3
…
y
…
0
3
4
3
0
…
M的坐标
…
(﹣2,0)
(0,0)
(2,0)
(4,0)
…
P的坐标
…
(0,﹣1)
(2,﹣2)
…
M的坐标
…
…
P的坐标
…
…
M的坐标
…
…
P的坐标
…
…
相关试卷
这是一份中考数学复习重难题型真题再现(全国通用)专题14反比例函数性质综合特训(原卷版+解析),共57页。
这是一份中考数学复习重难题型真题再现(全国通用)专题13一次函数与几何图形综合题(函数与面积、与其他有关)特训(原卷版+解析),共32页。
这是一份中考数学复习重难题型真题再现(全国通用)专题10函数的实际应用(利润最值、抛物线型、几何图形)特训(原卷版+解析),共56页。试卷主要包含了的一次函数.等内容,欢迎下载使用。