搜索
    上传资料 赚现金
    英语朗读宝

    2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】

    2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】第1页
    2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】第2页
    2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】

    展开

    这是一份2024年清华附中朝阳学校九年级数学第一学期开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列几组数中,能作为直角三角形三边长度的是( )
    A.2,3,4B.4,5,6C.6,8,11D.5,12,13
    2、(4分)如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为( )
    A.2B.2C.2D.2
    3、(4分)使分式有意义的x的取值范围是( )
    A.x≥1B.x≤1C.x≠1D.x>1
    4、(4分)为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择( )
    A.九(1)班B.九(2)班C.九(3)班D.九(4)班
    5、(4分)对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是( )
    A.开口向下
    B.对称轴是直线x=﹣2
    C.x>﹣2时,y随x的增大而增大
    D.x=﹣2,函数有最大值y=﹣1
    6、(4分)在某校举行的“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )
    A.众数B.方差C.中位数D.平均数
    7、(4分)下列事件中必然事件有( )
    ①当x是非负实数时,≥0;
    ②打开数学课本时刚好翻到第12页;
    ③13个人中至少有2人的生日是同一个月;
    ④在一个只装有白球和绿球的袋中摸球,摸出黑球.
    A.1个B.2个C.3个D.4个
    8、(4分)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中
    ①小明家与学校的距离1200米;
    ②小华乘坐公共汽车的速度是240米/分;
    ③小华乘坐公共汽车后7:50与小明相遇;
    ④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是( )
    A.1 个B.2个
    C.3 个D.4个
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是________.
    10、(4分)如图,D是△ABC中AC边上一点,连接BD,将△BDC沿BD翻折得△BDE,BE交AC于点F,若,△AEF的面积是1,则△BFC的面积为_______
    11、(4分)如图,在矩形中,,点分别在平行四边形各边上,且AE=CG,BF=DH, 四边形的周长的最小值为______.
    12、(4分)如图,在矩形中,对角线与相交于点,,,则的长为________.
    13、(4分)如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)(1)计算:
    (2)解方程: (2 x 1)( x  3)  4
    15、(8分)如图,在中,是边上一点,是的中点,过点作的平行线交的延长线于点,且,连接.
    (1)求证:是的中点;
    (2)当满足什么条件时,四边形是正方形,并说明理由.
    16、(8分)解不等式(组),并把解集在数轴上表示出来
    (1)
    (2)
    17、(10分)已知a,b满足|a﹣|++(c﹣4)2=1.
    (1)求a,b,c的值;
    (2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
    18、(10分)已知坐标平面内的三个点、、.
    (1)比较点到轴的距离与点到轴距离的大小;
    (2)平移至,当点和点重合时,求点的坐标;
    (3)平移至,需要至少向下平移超过 单位,并且至少向左平移 个单位,才能使位于第三象限.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若则关于x的方程的解是___________.
    20、(4分)在Rt△ABC中,∠A=90°,有一个锐角为10°,BC=1.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为 .
    21、(4分)如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.
    22、(4分)将二次函数化成的形式,则__________.
    23、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.
    (1)求第一批每支钢笔的进价是多少元?
    (2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
    25、(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
    (1)求一次函数y=kx+b的解析式;
    (2)若点D在y轴负半轴上,且满足S△COD═S△BOC,请直接写出点D的坐标.
    26、(12分)已知正方形中,为对角线上一点,过点作交于点,连接,为的中点,连接.
    (1)如图1,求证:;
    (2)将图1中的绕点逆时针旋转45°,如图2,取的中点,连接.问(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.
    (3)将图1中的绕点逆时计旋转任意角度,如图3,取的中点,连接.问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.
    【详解】
    解:A、22+32≠42,故不是直角三角形,故错误;
    B、42+52≠62,故不是直角三角形,故错误;
    C、62+82≠112,故不是直角三角形,故错误;
    D、52+122=132,故是直角三角形,故正确.
    故选D.
    2、D
    【解析】
    先利用勾股定理计算出DE,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF,则可判断△DEF为等腰直角三角形,然后根据等腰直角三角形的性质计算EF的长.
    【详解】
    ∵E为AB的中点,AB=4,∴AE=2,
    ∴DE==2.
    ∵四边形ABCD为正方形,∴∠A=∠ADC=90°,∴∠ADE+∠EDC=90°.
    ∵△ADE绕点D沿逆时针方向旋转后得到△DCF,∴∠ADE=∠CDF,DE=DF,∴∠CDF+∠EDC=90°,∴△DEF为等腰直角三角形,∴EF=DE=2.
    故选D.
    本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.
    3、C
    【解析】
    分式的分母不为零,即x-1≠1.
    【详解】
    解:当分母x-1≠1,即x≠1时,分式有意义;
    故选:C.
    从以下三个方面透彻理解分式的概念:
    (1)分式无意义⇔分母为零;
    (2)分式有意义⇔分母不为零;
    (3)分式值为零⇔分子为零且分母不为零.
    4、C
    【解析】
    根据标准差的意义,标准差越小数据越稳定,由于选的是学生身高较为整齐的,故要选取标准差小的,应从九(1)和九(3)里面选,再根据平均身高约为1.6m可知只有九(3)符合要求,故选C.
    5、C
    【解析】
    根据二次函数的性质依次判断各个选项后即可解答.
    【详解】
    ∵y=﹣(x+2)2﹣1,
    ∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,
    当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误.
    故选C.
    本题考查了二次函数的性质,熟练运用二次函数的性质是解决问题的关键.
    6、C
    【解析】
    由于比赛取前3名进入决赛,共有5名选手参加,故应根据中位数的意义解答即可.
    【详解】
    解:因为5位进入决赛者的分数肯定是5名参赛选手中最高的,
    而且5个不同的分数按从大到小排序后,中位数及中位数之前的共有3个数,
    故只要知道自己的分数和中位数就可以知道是否进入决赛了;
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    7、B
    【解析】
    根据必然事件、不可能事件、随机事件的概念判断即可.
    【详解】
    ①当x是非负实数时,0,是必然事件;
    ②打开数学课本时刚好翻到第12页,是随机事件;
    ③13个人中至少有2人的生日是同一个月,是必然事件;
    ④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.
    必然事件有①③共2个.
    故选B.
    本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    8、D
    【解析】
    根据函数图象中各拐点的实际意义求解可得.
    【详解】
    ①.根据图形可知小明家与学校的距离1200米,此选项正确;
    ②. 小华到学校的平均速度是1200÷(13−8)=240(米/分),此选项正确;
    ③. (480÷240)+8=10分, 所以小华乘坐公共汽车后7:50与小明相遇,此选项正确;
    ④. 小华跑步的平均速度是1200÷(20−8)=100(米/分)他们可以同时到达学校,此选项正确;
    故选:D.
    此题考查函数图象,看懂图中数据是解题关键根据.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、三角形的中位线等于第三边的一半
    【解析】
    ∵D,E分别是AC,BC的中点,
    ∴DE是△ABC的中位线,
    ∴DE=AB,
    设DE=a,则AB=2a,
    故答案是:三角形的中位线等于第三边的一半.
    10、2.5
    【解析】
    由,可得,由折叠可知,
    可得,由可得,则,又,可得,即可求得,然后求得.
    【详解】
    解:∵,
    ∴,
    由折叠可知,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    解得:,
    ∴;
    故答案为2.5.
    本题主要考查了折叠问题,翻折变换(折叠问题)实质上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题的关键是由线段的关系得到面积的关系.
    11、20
    【解析】
    作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB,GG′=AD,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值
    【详解】
    作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,EF=E'F,过点G作GG′⊥AB于点G′,如图所示
    AE=CG. BE=BE′
    E′G′=AB=8,
    GG′=AD=6
    E`G=
    ∵C四边形EFGH=2(GF+EF)=2E′G=20
    此题考查矩形的性质,勾股定理,解题关键在于作辅助线
    12、
    【解析】
    根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD, ∠BAD=90°,

    ∴△AOB是等边三角形,
    ∴OB=AB=1,
    ∴BD=2BO=2,
    在Rt△BAD中,
    故答案为
    考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.
    13、OB=OD.(答案不唯一)
    【解析】
    AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,即得结论.
    【详解】
    解: ∵OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,
    ∴△ABO≌△CDO(SAS).
    故答案为:OB=OD.(答案不唯一)
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2),.
    【解析】
    (1)先化成最简二次根式,再合并其中的同类二次根式即可;
    (2)先化成一元二次方程的一般形式,再用公式法求解.
    【详解】
    解:(1)
    =
    =
    =.
    (2)原方程可变形为:
    由一元二次方程的求根公式,得:,
    ∴,.
    ∴原方程的解为:,.
    本题考查了二次根式的混合运算和一元二次方程的解法,解题的关键是熟知二次根式的混合运算法则和一元二次方程的求解方法.
    15、 (1)见解析;(2)见解析.
    【解析】
    (1)根据AAS判定,即可进行求解;
    (2)根据等腰直角三角形的性质及正方形的判定定理即可求解.
    【详解】
    (1)证明:∵,∴,
    ∵点为的中点,∴,
    在和中,,,,∴,
    ∴,∵,∴,∴是的中点.
    (2)解:当是等腰直角三角形时,四边形是正方形,
    理由如下:∵,∴,
    ∵,∴;
    ∵,,
    ∴四边形是平行四边形,
    ∵,,
    ∴,,
    ∴平行四边形是正方形.
    此题主要考查正方形的判定,解题的关键是熟知全等三角形的判定与性质、平行四边形的判定及正方形的判定定理.
    16、(1)x>﹣5,数轴见解析;(2)﹣2<x≤3,数轴见解析.
    【解析】
    (1)去分母;去括号;移项;合并同类项;化系数为1;再把不等式的解集表示在数轴上;依此即可求解.
    (2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
    【详解】
    (1),
    去分母得:3(x+1)>2(x﹣1),
    去括号得:3x+3>2x﹣2,
    系数化为1得:x>﹣5,
    数轴如图所示:
    (2),
    解不等式①得:x>﹣2,
    解不等式②得:x≤3,
    ∴不等式组的解集是﹣2<x≤3,
    在数轴上表示不等式组的解集为:
    本题考查解一元一次不等式及一元一次不等式组,解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.
    17、(1)a=,b=5,c=4;(2)
    【解析】
    (1)根据非负数的性质得到方程,解方程即可得到结果;
    (2)根据三角形的三边关系,勾股定理的逆定理判断即可.
    【详解】
    (1)∵a,b,c满足|a-|++(c-4)2=1,
    ∴|a-|=1,=1,(c-4)2=1,
    解得a=,b=5,c=4.
    (2)∵a=,b=5,c=4,
    ∴a+b=+5>4.
    ∴以a,b,c为边能构成三角形.
    ∵a2+b2=()2+52=32=(4)2=c2,
    ∴此三角形是直角三角形.
    本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.
    18、 (1)点到轴的距离等于点到轴距离; (2);(1)1 ,1
    【解析】
    (1)根据横坐标为点到y轴的距离;纵坐标为点到x轴的距离即可比较大小;
    (2)由点A1和点B重合时,需将△ABC向右移2个单位,向下移2个单位,据此求解可得;
    (1)根据点A的纵坐标得出向下平移的距离,由点B的横坐标得出向左平移的距离.
    【详解】
    解:(1)∵,
    ∴点到轴的距离为1
    ∵,点到轴距离为1
    ∴点到轴的距离等于点到轴距离
    (2)点和点重合时,需将向右移2个单位,向下移2个单位,
    ∴点的对应点的坐标是
    (1)平移△ABO至△A2B2O2,需要至少向下平移超过1单位,并且至少向左平移1个单位,才能△A2B2O2使位于第三象限.
    故答案为:1,1.
    本题主要考查点的意义与图形的变换-平移,注意:点到x轴的距离等于该点纵坐标的绝对值;点到y轴的距离等于该点横坐标的绝对值;平面直角坐标系中点的坐标的平移规律.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、或
    【解析】
    由,即可得到方程的解.
    【详解】
    解:
    令时,有;
    令时,有;
    ∴,
    则关于x的方程的解是:或;
    故答案为:或.
    本题考查了一元二次方程的解,解题的关键是熟练掌握一元二次方程的解进行解题.
    20、1或2或4
    【解析】
    如图1:
    当∠C=10°时,∠ABC=30°,与∠ABP=30°矛盾;
    如图2:
    当∠C=10°时,∠ABC=30°,
    ∵∠ABP=30°,
    ∴∠CBP=10°,
    ∴△PBC是等边三角形,
    ∴CP=BC=1;
    如图3:
    当∠ABC=10°时,∠C=30°,
    ∵∠ABP=30°,
    ∴∠PBC=10°﹣30°=30°,
    ∴PC=PB,
    ∵BC=1,
    ∴AB=3,
    ∴PC=PB===2
    如图4:
    当∠ABC=10°时,∠C=30°,
    ∵∠ABP=30°,
    ∴∠PBC=10°+30°=90°,
    ∴PC=BC÷cs30°=4.
    故答案为1或2或4.
    考点:解直角三角形
    21、1
    【解析】
    解:解如图所示:在RtABC中,BC=3,AC=5,
    由勾股定理可得:AB2+BC2=AC2
    设旗杆顶部距离底部AB=x米,则有32+x2=52,
    解得x=1
    故答案为:1.
    本题考查勾股定理.
    22、
    【解析】
    利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
    【详解】
    解:,


    故答案为:.
    本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
    23、1.
    【解析】
    先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
    【详解】
    在Rt△ABC中,AB=10,BC=6,
    利用勾股定理可得AC=2.
    根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
    故答案为1.
    本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
    二、解答题(本大题共3个小题,共30分)
    24、(1)15元;(2)1支.
    【解析】
    试题分析:(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;
    (2)设销售y只后开始打折,根据第二批文具盒的利润率不低于20%,列出不等式,再求解即可.
    试题解析:解:(1)设第一批每只文具盒的进价是x元,根据题意得:
    ﹣=10
    解得:x=15,经检验,x=15是方程的解.
    答:第一批文具盒的进价是15元/只.
    (2)设销售y只后开始打折,根据题意得:
    (24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥141×20%,解得:y≥1.
    答:至少销售1只后开始打折.
    点睛:本题考查了列分式方程和一元一次不等式的应用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.
    25、(1)y=−x+4;(2)(0,−6)
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A. C的坐标,利用待定系数法即可求出k、b的值;
    (2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m

    相关试卷

    [数学]2020北京清华附中朝阳学校初二上学期期中数学试卷:

    这是一份[数学]2020北京清华附中朝阳学校初二上学期期中数学试卷,共6页。

    清华附中朝阳学校2023-2024学年数学九年级第一学期期末联考试题含答案:

    这是一份清华附中朝阳学校2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,如图,反比例函数的图象经过点A等内容,欢迎下载使用。

    2023-2024学年清华附中朝阳学校数学九上期末预测试题含答案:

    这是一份2023-2024学年清华附中朝阳学校数学九上期末预测试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是,已知,满足,则的值是,下列事件中,属于必然事件的是,如图,点等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map