2024年山东南山集团东海外国语学校九上数学开学教学质量检测试题【含答案】
展开
这是一份2024年山东南山集团东海外国语学校九上数学开学教学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列图形中,可以看作是中心对称图形的是( )
A.B.C.D.
2、(4分)下列说法中,不正确的是( )
A.两组对边分别平行的四边形是平行四边形
B.对角线互相平分且垂直的四边形是菱形
C.一组对边平行另外一组对边相等的四边形是平行四边形
D.有一组邻边相等的矩形是正方形
3、(4分)如图,正方形网格中的每个小正方形的边长为1,将绕旋转中心旋转某个角度后得到,其中点A,B,C的对应点是点,,,那么旋转中心是( )
A.点QB.点PC.点ND.点M
4、(4分)下列运算正确的是( )
A.B.C.D.2mm= 2m
5、(4分)分式的最简公分母是( )
A.B.
C.D.
6、(4分)下列事件是必然事件的是( )
A.乘坐公共汽车恰好有空座B.同位角相等
C.打开手机就有未接电话D.三角形内角和等于180°
7、(4分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为( )
A.1B.2C.3D.4
8、(4分)一次函数y=x+4的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)十二边形的内角和度数为_________.
10、(4分)如图,在正方形ABCD的外侧,作等边△ADE,则∠EBD=________ .
11、(4分)若正n边形的内角和等于它的外角和,则边数n为_____.
12、(4分)如图,在中,,平分,点为中点,则_____.
13、(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是: ,则射击成绩较稳定的是________(选填“甲”或“乙”).
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)解方程:x2+3x-4=0 (2) 计算:
15、(8分)如图,已知双曲线,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
16、(8分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.
(1)求证:;
(2)求证:;
(3)当时,求的长.
17、(10分)已知,在平面直角坐标系中,直线经过点和点.
(1)求直线所对应的函数表达式.
(2)若点在直线上,求的值.
18、(10分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,过点作且点在点的右侧.点从点出发沿射线方向以/秒的速度运动,同时点从点出发沿射线方向以/秒的速度运动,在线段上取点,使得,设点的运动时间为秒.当__________秒时,以,,,为顶点的四边形是平行四边形.
20、(4分)如图,已知,点是等腰斜边上的一动点,以为一边向右下方作正方形,当动点由点运动到点时,则动点运动的路径长为______.
21、(4分)若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.
22、(4分)用一块长80cm,宽60cm的纸板,在四个角截去四个相同的小正方形,然后做成一个底面积为1500cm2的无盖长方体纸盒,则截去的小正方形的边长为___________.
23、(4分)在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
(1)求△ABC的面积是____;
(2)求直线AB的表达式;
(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
25、(10分)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)若BD=CD,求证:四边形ADCE是矩形.
26、(12分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据中心对称的定义,结合所给图形即可作出判断.
详解:A、是中心对称图形,故本选项正确;
B、不是中心对称图形,故本选项错误;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误;
故选:A.
点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
2、C
【解析】
根据平行四边形、菱形和正方形的判定方法进行分析可得.
【详解】
A. 两组对边分别平行的四边形是平行四边形,正确;
B. 对角线互相平分且垂直的四边形是菱形,正确;
C. 一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故错误;
D. 有一组邻边相等的矩形是正方形,正确.
故选C.
3、C
【解析】
由图形绕某点旋转的性质(对应点到旋转中心的距离相等)可知旋转中心.
【详解】
解:点A的对应点是点,由图像可得,根据旋转的性质可知点M、P、Q都不是旋转中心,只有,且,所以点N是旋转中心.
故选:C
本题考查了图形的旋转,可由旋转的性质确定旋转前后两个图形的旋转中心,灵活应用旋转的性质是解题的关键.
4、C
【解析】
A. ,错误;B. ,错误;C. ,正确;D. ,错误.故选C.
5、B
【解析】
通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
【详解】
,,
∴最简公分母是,
故选B.
此题的关键是利用最简公分母的定义来计算,即通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6、D
【解析】
A.乘坐公共汽车恰好有空座,是随机事件;B.同位角相等,是随机事件;C.打开手机就有未接电话,是随机事件;D.三角形内角和等于180°,是必然事件,
故选D.
7、D
【解析】
【分析】过点C作轴,设点 ,则 得到点C的坐标,根据的面积为1,得到的关系式,即可求出的值.
【解答】过点C作轴,
设点 ,则
得到点C的坐标为:
的面积为1,
即
故选D.
【点评】考查反比例函数图象上点的坐标特征,掌握待定系数法是解题的关键.
8、D
【解析】
根据k,b的符号判断一次函数的图象所经过的象限.
【详解】
由题意,得:k>0,b>0,故直线经过第一、二、三象限.
即不经过第四象限.
故选:D.
考查一次函数的图象与系数的关系.熟练掌握系数与一次函数图象之间的关系是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1800°
【解析】
根据n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.
【详解】
解:十二边形的内角和为:(n﹣2)•180°=(12﹣2)×180°=1800°.
故答案为1800°.
本题考查了多边形的内角和的知识,解决本题的关键是正确运用多边形的内角和公式,要求同学们熟练掌握.
10、30°
【解析】
分析:判断△ABE是顶角为150°的等腰三角形,求出∠EBA的度数后即可求解.
详解:因为四边形ABCD是正方形,所以AB=AD,∠BAD=90°,∠ABD=45°.
因为△ADE是等边三角形,所以AD=AE,∠DAE=60°,
所以AB=AE,∠BAE=150°,所以∠EBA=(180°-150°)=15°,
所以∠EBD=∠ABD-∠EBA=45°-15°=30°.
故答案为30°.
点睛:本题考查了正方形和等边三角形的性质,正方形的四边都相等,四个角都是直角,每一条对角线平分一组对角.
11、1
【解析】
设这个多边形的边数为n,则依题意可列出方程(n﹣2)×180°=360°,从得出答案.
【详解】
解:设这个多边形的边数为n,则依题意可得:
(n﹣2)×180°=360°,
解得,n=1.
故答案为:1.
本题考查的知识点是正多边形的内角和与外角和,熟记正多边形内角和的计算公式是解此题的关键.
12、1
【解析】
根据等腰三角形的三线合一得到∠ADC=90°,根据直角三角形的性质计算即可.
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,点E为AC中点,
∴DE=AC=1,
故答案为:1.
本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
13、甲
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:因为甲的方差最小,所以射击成绩较稳定的是甲;
故答案为:甲
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题(本大题共5个小题,共48分)
14、(1) (2)
【解析】
(1)解一元二次方程,将等式左边因式分解,转化成两个一元一次方程,求解即可. (2) 首先把特殊角的三角函数值代入,然后进行二次根式的运算即可.
【详解】
解:(1)原方程变形得(x-1)(x+4)=0
解得x1=1,x2=-4
经验:x1=1,x2=-4是原方程的解.
(2)原式=×××=
本题是计算题第(1)考查解二元一次方程-因式分解.(2)特殊三角函数的值.本题较基础,熟练掌握运算的方法即可求解.
15、(1)k=6;
(2)直线CD的解析式为;
(3)AB∥CD,理由见解析.
【解析】
(1)把点D的坐标代入双曲线解析式,进行计算即可得解.
(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答.
(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.
【详解】
解:(1)∵双曲线经过点D(6,1),∴,解得k=6.
(2)设点C到BD的距离为h,
∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=×6•h=12,解得h=4.
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4= -3.
∴,解得x= -2.∴点C的坐标为(-2,-3).
设直线CD的解析式为y=kx+b,
则,解得.
∴直线CD的解析式为.
(3)AB∥CD.理由如下:
∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),
∴点A、B的坐标分别为A(-2,0),B(0,1).
设直线AB的解析式为y=mx+n,
则,解得.
∴直线AB的解析式为.
∵AB、CD的解析式k都等于相等.
∴AB与CD的位置关系是AB∥CD.
16、(1)证明见解析;(2)证明见解析;(3)PH=.
【解析】
(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
(2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
(3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
【详解】
(1)证明:∵PE=BE,
∴∠EPB=∠EBP,
又∵∠EPH=∠EBC=90°,
∴∠EPH-∠EPB=∠EBC-∠EBP.
即∠BPH=∠PBC.
又∵四边形ABCD为正方形
∴AD∥BC,
∴∠APB=∠PBC.
∴∠APB=∠BPH.
(2)证明:过B作BQ⊥PH,垂足为Q,
由(1)知,∠APB=∠BPH,
在△ABP与△QBP中,
,
∴△ABP≌△QBP(AAS),
∴AP=QP,BA=BQ.
又∵AB=BC,
∴BC=BQ.
又∵∠C=∠BQH=90°,
∴△BCH和△BQH是直角三角形,
在Rt△BCH与Rt△BQH中,
,
∴Rt△BCH≌Rt△BQH(HL),
∴CH=QH,
∴AP+HC=PH.
(3)解:∵AP=2,
∴PD=AD-AP=8-2=6,
设AE=x,则EP=8-x,
在Rt△AEP中,AE2+AP2=PE2,
即x2+22=(8-x)2,
解得:x=,
∵∠A=∠D=∠ABC=90°,
∴∠AEP+∠APE=90°,
由折叠的性质可得:∠EPG=∠ABC=90°,
∴∠APE+∠DPH=90°,
∴∠AEP=∠DPH,
∴△DPH∽△AEP,
∴,
∴,
解得:DH=.
∴PH=
此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
17、(1);(2)的值为.
【解析】
(1)设直线AB所对应的函数表达式为.把点和点.代入,用待定系数法求解即可;
(2)把代入(1)中求得的解析式即可求出m的值.
【详解】
(1)直线经过点和点,
解得
直线所对应的函数表达式为.
(2)当时,.
的值为.
本题考查了待定系数法求函数解析式及一次函数图像上点的坐标特征,熟练掌握待定系数法是解答本题的关键.
18、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或14
【解析】
根据点P所在的位置分类讨论,分别画出图形,利用平行四边形的对边相等列出方程,从而求出结论.
【详解】
解:①当点P在线段BE上时,
∵AF∥BE
∴当AD=BC时,此时四边形ABCD为平行四边形
由题意可知:AD=x,PE=2x
∵PC=2cm,
∴CE=PE-PC=(2x-2)cm
∴BC=BE-CE=(14-2x)cm
∴x=14-2x
解得:x=;
②当点P在EB的延长线上时,
∵AF∥BE
∴当AD=CB时,此时四边形ACBD为平行四边形
由题意可知:AD=x,PE=2x
∵PC=2cm,
∴CE=PE-PC=(2x-2)cm
∴BC= CE-BE =(2x-14)cm
∴x=2x-14
解得:x=14;
综上所述:当秒或14秒时,以,,,为顶点的四边形是平行四边形.
故答案为:秒或14秒.
此题考查的是平行四边形的性质和动点问题,掌握平行四边形的对边相等和行程问题中的公式是解决此题的关键.
20、
【解析】
连接,根据题意先证出,然后得出,所以点运动的路径长度即为点从到的运动路径,继而得出结论
【详解】
连接,
∵,是等腰直角三角形,
∴,∠ABC=90°
∵四边形是正方形
∴BD=BF,∠DBF=∠ABC=90°,
∴∠ABD=∠CBF,
在△DAP与△BAP中
∴,
∴,
点运动的路径长度即为点从到的运动路径,为.
故答案为:
本题主要考查的是等腰直角三角形的性质、等边三角形的性质、正方形的性质以及全等三角形的性质和判定,熟练掌握全等三角形的判定和性质是解题的关键.
21、八
【解析】
360°÷(180°-135°)=8
22、1cm
【解析】
根据题意,将纸板的四个角截去四个相同的小正方形后,得到一个底面积为100的无盖长方体纸盒,设截去的小正方形的边长为,根据底面的面积公式,列一元二次方程求解即可.
【详解】
解:设截去的小正方形的边长为,由题意得,,
整理得,
解得.
当时,<0, <0,不符合题意,应舍去;
当时,>0,>0,符合题意,所以=1.
故截去的小正方形的边长为1cm.
故答案为:1cm
本题考查一元二次方程的应用,根据题意将无盖长方体纸盒的底面面积表示出来,列关于x的一元二次方程求解即可.
23、6 或
【解析】
(1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;
(2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;
②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.
【详解】
解:(1)四边形是矩形,
,,
由折叠的性质可知,,如图1所示:
,
,
,
,
是的中点,
,
,
(2)①当点在矩形内时,连接,如图2所示:
由折叠的性质可知,,,,
四边形是矩形,是的中点,
,,,
在和中,,
,
,
,
,,,
;
②当点在矩形外时,连接,如图3所示:
由折叠的性质可知,,,,
四边形是矩形,是的中点,
,,,
在和中,,
,
,
,
,
,
即:,
,
解得:,(不合题意舍去),
综上所述,或,
故答案为(1)6;(2)或.
本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)1;(2)y=﹣x+;(3)2<k≤1或﹣≤k<2;(1)(2,)或(2,).
【解析】
(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=1,∠C=92°,再利用三角形面积公式列式计算即可;
(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;
(3)由于y=kx+2是一次函数,所以k≠2,分两种情况进行讨论:①当k>2时,求出y=kx+2过A(1,3)时的k值;②当k<2时,求出y=kx+2过B(5,1)时的k值,进而求解即可;
(1)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.
【详解】
解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),
∴AC=3﹣1=2,BC=5﹣1=1,∠C=92°,
∴S△ABC=AC•BC=×2×1=1.
故答案为1;
(2)设直线AB的表达式为y=kx+b.
∵A点坐标是(1,3),B点坐标是(5,1),
∴,解得,
∴直线AB的表达式为y=﹣x+;
(3)当k>2时,y=kx+2过A(1,3)时,
3=k+2,解得k=1,
∴一次函数y=kx+2与线段AB有公共点,则2<k≤1;
当k<2时,y=kx+2过B(5,1),
1=5k+2,解得k=﹣,
∴一次函数y=kx+2与线段AB有公共点,则﹣≤k<2.
综上,满足条件的k的取值范围是2<k≤1或﹣≤k<2;
(1)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.
设直线CP的解析式为y=﹣x+n,
∵C点坐标是(1,1),
∴1=﹣+n,解得n=,
∴直线CP的解析式为y=﹣x+,
∴P(2,).
设直线AB:y=﹣x+交y轴于点D,则D(2,).
将直线AB向上平移﹣=2个单位,得到直线y=﹣x+,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(2,).
综上所述,所求P点坐标是(2,)或(2,).
故答案为(2,)或(2,).
本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.
25、(1)详见解析;(2)详见解析
【解析】
(1)根据平行四边形的性质、等腰三角形的性质,利用全等三角形的判定定理SAS可以证得△ADC≌△ECD;
(2)利用等腰三角形的“三合一”性质推知AD⊥BC,即∠ADC=90°;由平行四边形的判定定理(对边平行且相等是四边形是平行四边形)证得四边形ADCE是平行四边形,所以有一个角是直角的平行四边形是矩形.
【详解】
(1)∵四边形ABDE是平行四边形,
∴AB∥DE,AB=DE;
∴∠B=∠EDC;
又∵AB=AC,
∴AC=DE,∠B=∠ACB,
∴∠EDC=∠ACD;
∵在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS);
(2)∵四边形ABDE是平行四边形(已知),
∴BD∥AE,BD=AE(平行四边形的对边平行且相等),
∴AE∥CD;
又∵BD=CD,
∴AE=CD,
∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);
在△ABC中,AB=AC,BD=CD,
∴AD⊥BC,
∴∠ADC=90°,
∴▱ADCE是矩形.
26、△BCD是直角三角形
【解析】
首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形.
【详解】
△BCD是直角三角形,
理由:在Rt△BAD中,
∵AB=AD=2,
∴BD==,
在△BCD中,BD2+CD2=()2+12=9,BC2=32=9,
∴BD2+CD2=BC2,
△BCD是直角三角形.
此题主要考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份山东南山集团东海外国语学校2023-2024学年数学九上期末检测模拟试题含答案,共8页。试卷主要包含了已知二次函数等内容,欢迎下载使用。
这是一份2023-2024学年山东南山集团东海外国语学校数学九上期末统考模拟试题含答案,共8页。试卷主要包含了方程的根为等内容,欢迎下载使用。
这是一份山东南山集团东海外国语学校2023-2024学年八上数学期末综合测试试题含答案,共7页。试卷主要包含了已知A等内容,欢迎下载使用。