2024年山东省高密市银鹰文昌中学数学九上开学联考试题【含答案】
展开
这是一份2024年山东省高密市银鹰文昌中学数学九上开学联考试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知x,y满足,则以x,y的值为两边长的等腰三角形的周长是( )
A.20或16B.20C.16D.以上答案都不对
2、(4分)下列命题中,假命题是( )
A.对角线互相平分的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直平分的四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
3、(4分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为( )
A.(1,1)B.C.D.
4、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
A.33°B.80°C.57°D.67°
5、(4分)下列说法中,错误的是( )
A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个
C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解
6、(4分)春节期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是( )
A.2小时B.2.2小时C.2.25小时D.2.4小时
7、(4分)如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )
A.6B.5C.4D.3
8、(4分)在中,,,则BC边上的高为
A.12B.10C.9D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点 C 是线段 AB 的黄金分割点(AC>BC),若 AC=2则 =______.
10、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
11、(4分)在实数范围内分解因式:x2﹣3=_____.
12、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
13、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).
(1)求G点坐标
(2)求直线EF解析式
(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由
15、(8分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为(单位:吨/小时),卸完这批货物所需的时间为(单位:小时).
(1)求关于的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
16、(8分)已知:如图,在四边形中,,为对角线的中点,为的中点,为的中点.求证:
17、(10分)求证:取任何实数时,关于的方程总有实数根.
18、(10分)如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.
(1)证明:;
(2)若,求当形ABCD的周长;
(3)在没有辅助线的前提下,图中共有_________对相似三角形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“ ”或“”).
20、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
21、(4分)函数y=的自变量x的取值范围是_____.
22、(4分)如图,正方形A1B1C1O,A2B2C2C1,A3B3C3C2, ……,按如图的方式放置.点A1,A2,A3,……和点C1,C2,C3……分别在直线y=x +1和x轴上,则点A6的坐标是____________.
23、(4分)点A(﹣3,0)关于y轴的对称点的坐标是__.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图平行四边形ABCD中,对角线AC与BD相交于O,E.F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形
25、(10分)计算:(- )2×( )-2+(-2019)0
26、(12分)(课题研究)旋转图形中对应线段所在直线的夹角(小于等于的角)与旋转角的关系.
(问题初探)线段绕点顺时针旋转得线段,其中点与点对应,点与点对应,旋转角的度数为,且.
(1)如图(1)当时,线段、所在直线夹角为______.
(2)如图(2)当时,线段、所在直线夹角为_____.
(3)如图(3),当时,直线与直线夹角与旋转角存在着怎样的数量关系?请说明理由;
(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角_____.
(运用拓广)运用所形成的结论求解下面的问题:
(4)如图(4),四边形中,,,,,,试求的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.
【详解】
解:根据题意得,4-x=0,y-8=0,
解得x=4,y=8,
①4是腰长时,三角形的三边分别为4、4、8,
∵4+4=8,
∴不能组成三角形,
②4是底边时,三角形的三边分别为4、8、8,
能组成三角形,周长=4+8+8=1,
所以,三角形的周长为1.
故选B.
本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.
2、D
【解析】
根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.
【详解】
A.对角线互相平分的四边形是平行四边形,是真命题;
B.对角线互相平分且相等的四边形是矩形,是真命题;
C.对角线互相垂直平分的四边形是菱形,是真命题;
D.对角线互相垂直且相等的四边形是正方形,是假命题;
故选D.
本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.
3、B
【解析】
首先求出AB的长,进而得出EO的长,再利用含30度角的直角三角形的性质以及勾股定理进行求解即可.
【详解】
过E作EM⊥AC,则∠EMO=90°,
∵四边形ABCD是菱形,
∴AB=CD=BC=AD,AC⊥DB,∠BAO=∠BAD,
∵∠BAD=60°,
∴∠BAO=30°,
∵AC⊥DB,
∴∠BOA=90°,
∵E是AB的中点,
∴EO=EA=EB=AB,
∵菱形ABCD的周长为16,
∴AB=4,
∴EO=2,
∵EO=AE,
∴∠EOA=∠EAO=30°,
又∵∠EMO=90°,
∴EM=EO=1,
∴OM=
∴则点E的坐标为:(,1),
故选B.
本题考查了菱形的性质,坐标与图形,勾股定理,含30度角的直角三角形的性质,直角三角形斜边中线的性质,熟练掌握相关知识是解题的关键.
4、A
【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
【详解】
解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.
此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
5、C
【解析】
对于A、B选项,可分别写出满足题意的不等式的解,从而判断A、B的正误;
对于C、D,首先分别求出不等式的解集,再与给出的解集或解进行比较,从而判断C、D的正误.
【详解】
A. 由x<5,可知该不等式的整数解有4,3,2,1,-1,-2,-3,-4等,有无数个,所以A选项正确,不符合题意;
B. 不等式x>−5的负整数解集有−4,−3,−2,−1.故正确,不符合题意;
C. 不等式−2x−4,故错误.
D. 不等式2x
相关试卷
这是一份2024年广东省东莞中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省王浩屯中学数学九上开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。
这是一份2023-2024学年山东省高密市银鹰文昌中学九上数学期末预测试题含答案,共7页。试卷主要包含了下列判断正确的是,下列说法正确的是,下列事件中,必然发生的是,不等式组的整数解有等内容,欢迎下载使用。