2024年山东省济南市汇才学校九年级数学第一学期开学考试模拟试题【含答案】
展开
这是一份2024年山东省济南市汇才学校九年级数学第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则矩形ABCD的面积是( )
A.13 B. C.60 D.120
2、(4分)若与|x﹣y﹣3|互为相反数,则x+y的值为( )
A.3B.9C.12D.27
3、(4分)已知,为实数,且,,设,,则,的大小关系是( ).
A.B.C.D.无法确定
4、(4分)在平面直角坐标系内,点是原点,点的坐标是,点的坐标是,要使四边形是菱形,则满足条件的点的坐标是( )
A.B.C.D.
5、(4分)二次根式中,字母a的取值范围是( )
A.a<1B.a≤1C.a≥1D.a>1
6、(4分)如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )
A.19B.20C.21D.22
7、(4分) 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
A.1B.2C.3D.4
8、(4分)如图,中,与关于点成中心对称,连接,当( )时,四边形为矩形.
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)比较大小:2____3(填“ >、<、或 = ”).
10、(4分)若+(y﹣2)2=0,那么(x+y)2018=_____.
11、(4分)某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)
12、(4分)己知某汽车油箱中的剩余油量y(升)与该汽车行驶里程数x(千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米
13、(4分)使分式 有意义的x的范围是 ________ 。
三、解答题(本大题共5个小题,共48分)
14、(12分)已知下面一列等式:
;;;;…
(1)请你按这些等式左边的结构特征写出它的一般性等式:
(2)验证一下你写出的等式是否成立;
(3)利用等式计算:.
15、(8分)在平面直角坐标系中,正比例函数与反比例函数为的图象交于两点
若点,求的值;
在的条件下,x轴上有一点,满足的面积为,水点坐标;
若,当时,对于满足条件的一切总有,求的取值范围.
16、(8分)某校为加强学生安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分100分)进行统计,请根据尚为完成的频率和频数分布直方图,解答下列问题:
(1)这次抽取了______名学生的竞赛成绩进行统计,其中m=______,n=______;
(2)补全频数分布直方图;
(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?
17、(10分)解方程
18、(10分)小张是个“健步走”运动爱好者,他用手机软件记录了近阶段每天健步走的步数,并将记录结果绘制成了如下统计表:
求小张近阶段平均每天健步走的步数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.
20、(4分)▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
21、(4分)如果向量,那么四边形的形状可以是_______________(写出一种情况即可)
22、(4分)如图,在平面直角坐标系中,点A为,点C是第一象限上一点,以OA,OC为邻边作▱OABC,反比例函数的图象经过点C和AB的中点D,反比例函数图象经过点B,则的值为______.
23、(4分)如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.
(1)求这个一次函数的解析式和自变量x的取值范围;
(2)当x=-时,函数y的值;
(3)当y=7时,自变量x的值.
25、(10分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
26、(12分)如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由折叠图形的性质求得∠HEF=90°,则∠HEF=∠EFG=∠FGH=∠GHE=90∘ , 得到四边形EHFG是矩形,再由折叠的性质得矩形ABCD的面积等于矩形EFGH面积的2倍,根据已知数据即可求出矩形ABCD的面积.
【详解】
如图,
根据折叠的性质可得∠AEH=∠MEH,∠BEF=∠FEM,
∴∠AEH+∠BEF=∠MEH+∠FEM,
∴∠HEF=90°,
同理得∠HEF=∠EFG=∠FGH=∠GHE=90∘
∴四边形EHFG是矩形,
由折叠的性质得:S矩形ABCD=2S矩形HEFG=2×EH×EF=2×5×12=120;
故答案为:D.
本题考查矩形的折叠问题,解题关键在于能够得到四边形EHFG是矩形
2、D
【解析】
依题意得.
∴x+y=27.
故选D.
3、C
【解析】
对M、N分别求解计算,进行异分母分式加减,然后把ab=1代入计算后直接选取答案
【详解】
解:
∵,∴
∵,∴
∴M=N
故选C
本题考查分式的加减法,熟练掌握分式的运算为解题关键
4、C
【解析】
由A,B两点坐标可以判断出AB⊥x轴,再根据菱形的性质可得OC的长,从而确定C点坐标.
【详解】
如图所示,
∵A(3,4),B(3,-4)
∴AB∥y轴,即AB⊥x轴,
当四边形AOBC是菱形时,点C在x轴上,
∴OC=2OD,
∵OD=3,
∴OC=6,即点C的坐标为(6,0).
故选C.
此题主要考查了菱形的性质,关键是掌握菱形的对角线互相垂直平分.
5、C
【解析】
由二次根式有意义的条件可知a-1≥0,解不等式即可.
【详解】
由题意a-1≥0
解得a≥1
故选C.
本题考查了二次根式的意义,掌握被开方数需大于等于0即可解题.
6、D
【解析】
观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.
【详解】
第个图案中有黑色纸片3×1+1=4张
第2个图案中有黑色纸片3×2+1=7张,
第3图案中有黑色纸片3×3+1=10张,
…
第n个图案中有黑色纸片=3n+1张.
当n=7时,3n+1=3×7+1=22.
故选D.
此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.
7、C
【解析】
试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.
∴EP+FP=EP+F′P.
由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.
∵四边形ABCD为菱形,周长为12,
∴AB=BC=CD=DA=1,AB∥CD,
∵AF=2,AE=1,
∴DF=AE=1,
∴四边形AEF′D是平行四边形,
∴EF′=AD=1.
∴EP+FP的最小值为1.
故选C.
考点:菱形的性质;轴对称-最短路线问题
8、C
【解析】
由对称性质可先证得四边形AEFB是平行四边形,对角线相等的平行四边形是矩形,得到AF=BE,进而得到△BCA为等边三角形,得到角度为60°
【详解】
∵与关于点成中心对称
∴AC=CF,BC=EC
∴四边形AEFB是平行四边形
当AF=BE时,即BC=AC,四边形AEFB是矩形
又∵
∴△BCA为等边三角形,故
选C
本题主要考查平行四边形的性质与矩形的判定性质,解题关键在于能够证明出三角形BCA是等边三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
10、1
【解析】
直接利用偶次方的性质以及算术平方根的定义得出x,y的值,进而得出答案.
【详解】
∵+(y-2)2=0,
∴x+3=0,y-2=0,
解得:x=-3,y=2,
则(x+y)2018=(-3+2)2018=1.
故答案为:1.
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
11、0.1
【解析】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.
【详解】
解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种苹果幼树移植成活率的概率约为0.1,
故答案为:0.1.
此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
12、500
【解析】
根据当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,根据题意列出式子进行计算即可.
【详解】
(250-200)÷(126-120)×(120-90)+250=500,
故答案为:500.
此题考查有理数的混合运算,解题关键在于根据题意列出式子.
13、x≠1
【解析】
根据分式有意义的条件可求解.
【详解】
分母不为零,即x-1≠0,x≠1.
故答案是:x≠1.
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
三、解答题(本大题共5个小题,共48分)
14、(1)一般性等式为;(2)原式成立;详见解析;(3).
【解析】
(1)先要根据已知条件找出规律;(2)根据规律进行逆向运算;(3)根据前两部结论进行计算.
【详解】
解:(1)由;;;;…,
知它的一般性等式为;
(2),
原式成立;
(3)
.
解答此题关键是找出规律,再根据规律进行逆向运算.
15、(1);(2)或;(3)
【解析】
(1)将点分别代入正比例函数解析式以及反比例函数解析式,即可求出的值;
(2)联立正反比例函数解析式求出点B的坐标,可得原点O为的中点,再根据三角形面积公式求解即可;
(3)当时,,根据题意得出,再根据k与m的关系求解即可.
【详解】
解:将代入和
解得
(2)联立,解得:或,
,
∴原点O为的中点,
,
,
或;
,
,
当时,对于的一切总有,
,
,
∵,
∴,
.
本题考查了数形结合的数学思想.解此类题型通常与不等式结合.利用图象或解不等式的方法来解题是关键.
16、(1)200,70,0.12;(2)详见解析;(3)420
【解析】
(1)根据50.5~60.5的频数和频率先求出总数,再根据频数、频率和总数之间的关系分别求出m、n的值;
(2)根据(1)的结果可补全统计图;
(3)用全校的总人数乘以成绩在70分以下(含70分)的学生所占的百分比,即可得出答案.
【详解】
解:(1)根据题意得:=200(名),
m=200×0.35=70(名),
n==0.12;
故答案为:200,70,0.12;
(2)根据(1)补图如下:
(3)根据题意得:
1500×(0.08+0.2)=420(人),
答:该校安全意识不强的学生约有420人.
此题主要考查了频数分布直方图、频数分布表、利用样本估计总体,关键是读懂频数分布直方图,能利用统计图获取信息;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、x=2
【解析】
方程两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可得.
【详解】
解:两边同时乘以x-1,得
,
解得:,
检验:当x=2时,x-1≠0,
所以原分式方程的解是.
本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
18、1.22万步
【解析】
直接利用表中数据,结合加权平均数求法得出答案.
【详解】
解:由题意可得,(1.1×3+1.2×2+1.3×5)=1.22(万步),
答:小张近阶段平均每天健步走的步数为1.22万步.
此题主要考查了加权平均数,正确利用表格中数据是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m<
【解析】
根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.
【详解】
解:∵一元二次方程有两个不相等的实数根,
∴△=(-3)2−4m>0,
∴m<,
故答案为:m<.
本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.
20、(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
∴C(3,1).
21、平行四边形
【解析】
根据相等向量的定义和四边形的性质解答.
【详解】
如图:
∵=,
∴AD∥BC,且AD=BC,
∴四边形ABCD的形状可以是平行四边形.
故答案为:平行四边形.
此题考查了平面向量,掌握平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)是解题的关键.
22、
【解析】
过C作CE⊥x轴于E,过D作DF⊥x轴于F,易得△COE∽△DAF,设C(a,b),则利用相似三角形的性质可得C(4,b),B(10,b),进而得到.
【详解】
如图,过C作CE⊥x轴于E,过D作DF⊥x轴于F,则∠OEC=∠AFD=90°,
又,
,
∽,
又是AB的中点,,
,
设,则,,
,,
,
反比例函数的图象经过点C和AB的中点D,
,
解得,
,
又,
,
,
故答案为.
本题考查了反比例函数图象上点的坐标特征以及平行四边形的性质,解题的关键是掌握:反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
23、1
【解析】
试题分析:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,
∴PE=PF,∠1=∠2,
在△AOP与△BOP中,
,
∴△AOP≌△BOP,
∴AP=BP,
在△EOP与△FOP中,
,
∴△EOP≌△FOP,
在Rt△AEP与Rt△BFP中,
,
∴Rt△AEP≌Rt△BFP,
∴图中有1对全等三角形,
故答案为1.
考点:角平分线的性质,全等三角形的判定和性质.
二、解答题(本大题共3个小题,共30分)
24、(1)一次函数的解析式为y=-x+5,自变量x的取值范围是x取任意实数;(2)5.5;(3)x=-2
【解析】
(1)设y=kx+b,代入(-4,9)和(6,-1)得关于k和b的方程组,解方程组即可;
(2)代入x=-于函数式中即可求出y值;
(3)把y=7代入函数式,即可求解x的值.
【详解】
解:(1)设y=kx+b,
代入(-4,9)和(6,-1)得,
解得k=-1,b=5,
所以一次函数的解析式为y=-x+5,自变量x的取值范围是:x取任意实数;
(2)当x=-时,y=-(-)+5=5.5;
(3)当y=7时,即7=-x+5,
解得x=-2.
本题主要考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征,解决这类问题一般先设函数的一般式,再代入两个点构造方程组求解.
25、2.5
【解析】
一次函数的解析式为y=kx+b,图像经过(﹣4,15),(6,﹣5)两点,把这两点代入函数即可求出k、b的值,再把P(m,2)代入函数即可求出m值.
【详解】
解:设一次函数解析式为y=kx+b,
把(﹣4,15),(6,﹣5)代入得,
解得:,
所以一次函数解析式为y=﹣2x+7,
把P(m,2)代入y=﹣2x+7,可得:﹣2m+7=2,
解得:m=2.5.
本题主要考查了待定系数法求一次函数解析式,牢牢掌握该法是解答本题的关键.
26、(1)①详见解析;②详见解析;(1)当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,理由详见解析;(3)
【解析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(1)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(1)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE1+OE1=OB1.
∴(BE+DF)1+EF1=(1BE)1+(1OE)1=4(BE1+OE1)=4OB1=(1OB)1=BD1.
在正方形ABCD中,AB=AD,BD1=AB1+AD1=1AB1.
∴(BE+DF)1+EF1=1AB1;
(1)解:当BE≠DF时,(BE+DF)1+EF1=1AB1仍然成立,
理由如下:如图1,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM1+DM1=BD1,
∴(BE+EM)1+DM1=BD1.
即(BE+DF)1+EF1=1AB1;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)1+PE1=1AB1.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+1PD=4 ,
∴1BE+1PD=4,即BE+PD=1,
∵AB=4,
∴(1)1+PE1=1×41,
解得,PE=1,
∴BE=1,
∴PD=1﹣1.
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
分数段
频数
频率
50.5~60.5
16
0.08
60.5~70.5
40
0.2
70.5~80.5
50
0.25
80.5~90.5
m
0.35
90.5~100.5
24
n
相关试卷
这是一份2023-2024学年山东省济南市汇才学校九年级数学第一学期期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,两个相似三角形的面积比是9等内容,欢迎下载使用。
这是一份2023-2024学年山东省济南市汇才学校数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,如图,将Rt△ABC等内容,欢迎下载使用。
这是一份山东省济南市汇才学校2023-2024学年数学八上期末质量跟踪监视试题含答案,共7页。试卷主要包含了若函数是正比例函数,则的值是,下列三组线段能组成三角形的是,若分式的值为0,则x的值为,某次知识竞赛共有20道题,规定等内容,欢迎下载使用。