2024年山东省济南市汇才学校九上数学开学复习检测模拟试题【含答案】
展开
这是一份2024年山东省济南市汇才学校九上数学开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F,若DF=3,则AC的长为( )
A.B.C.D.
2、(4分)某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么请你估计该厂这20万件产品中合格产品约有( )
A.1万件B.18万件C.19万件D.20万件
3、(4分)如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )
A.50°B.40°C.80°D.100°
4、(4分)甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:
关于以上数据的平均数、中位数、众数和方差,说法不正确的是( )
A.甲、乙的平均数相等B.甲、乙的众数相等
C.甲、乙的中位数相等D.甲的方差大于乙的方差
5、(4分)已知一组数据的方差是3,则这组数据的标准差是( )
A.9B.3C.D.
6、(4分)若关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>1B.k<1C.k>1且k≠0D.k<1且k≠0
7、(4分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A.B.C.5D.4
8、(4分)将化简,正确的结果是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简:= __________.
10、(4分)将分别写有“绿色闵行”、“垃圾分类”、“要先行”的三张大小、质地相同的卡片随机排列,那么恰好排列成“绿色闵行垃圾分类要先行”的概率是__________.
11、(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式2x+m<﹣x﹣2<0的解集为_____.
12、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
13、(4分)数据1,4,5,6,4,5,4的众数是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)我们知道定理“直角三角形斜边上的中线等于斜边的一半”,这个定理的逆命题也是真命题.
(1)请你写出这个定理的逆命题是________;
(2)下面我们来证明这个逆命题:如图,CD是△ABC的中线,CD=AB.求证:△ABC为直角三角形.请你写出证明过程.
15、(8分)如图,在平行四边形中,,是中点,在延长线上,连接相交于点.
(1)若,求平行四边形的面积;
(2)若,求证:.
16、(8分)据大数据统计显示,某省2016年公民出境旅游人数约100万人次,2017年与2018年两年公民出境旅游总人数约264万人次,若这两年公民出境旅游总人数逐年递增,请解答下列问题:
(1)求这两年该省公民出境旅游人数的年平均增长率;
(2)如果2019年仍保持相同的年平均增长率,请你预测2019年该省公民出境旅游人数约多少万人次?
17、(10分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.
18、(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数的图像是由直线__________________而得.
20、(4分)同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,则它们另一个交点为坐标为_____.
21、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
22、(4分)分解因式:= .
23、(4分)二次函数的图象的顶点是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在数学课上,老师出了这样一道题:甲、乙两地相距1400km,乘高铁列车从甲地到乙地比乘特快列车少用9h,已知高铁列车的平均行驶速度是特快列车的2.8倍。求高铁列车从甲地到乙地的时间.老师要求同学先用列表方式分析再解答.下面是两个小组分析时所列的表格:
小组甲:设特快列车的平均速度为xkm/h.
小组乙:高铁列车从甲地到乙地的时间为yh
(1)根据题意,填写表格中空缺的量;(2)结合表格,选择一种方法进行解答.
25、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点.
(1)在图中以格点为顶点画一个面积为5的正方形.
(2)如图2所示,A,B,C是小正方形的顶点,求∠ABC的度数.
26、(12分)定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“快乐分式”.如:,则 是“快乐分式”.
(1)下列式子中,属于“快乐分式”的是 (填序号);
① ,② ,③ ,④ .
(2)将“快乐分式”化成一个整式与一个分子为常数的分式的和的形式为: = .
(3)应用:先化简 ,并求x取什么整数时,该式的值为整数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=AC.
【详解】
如图,
∵D、E分别为AC、BC的中点,
∴DE∥AB,
∴∠2=∠3,
又∵AF平分∠CAB,
∴∠1=∠3,
∴∠1=∠2,
∴AD=DF=3,
∴AC=2AD=1.
故选C.
本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.
2、C
【解析】
抽取的100件进行质检,发现其中有5件不合格,那么合格的有95件,由此即可求出这类产品的合格率是95%,然后利用样本估计总体的思想,即可知道合格率是95%,即可求出该厂这20万件产品中合格品的件数.
【详解】
∵某烟花爆竹厂从20万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,
∴合格的有95件,
∴合格率为95÷100=95%,
∴估计该厂这20万件产品中合格品约为20×95%=19万件,
故选C.
此题主要考查了样本估计总体的思想,此题利用样本的合格率去估计总体的合格率.
3、C
【解析】
由平行四边形的性质及角平分线的性质可得∠ADC的大小,进而可求解∠B的度数.
【详解】
解:在Rt△ADF中,∵∠DAF=50°,
∴∠ADE=40°,
又∵DE平分∠ADC,
∴∠ADC=80°,
∴∠B=∠ADC=80°.
故选:C.
本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.
4、B
【解析】
根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,xn,则 (x1+x2+…+xn)就叫做这n个数的算术平均数;s2=进行计算即可.
【详解】
解:A、甲的平均数为1,乙的平均数为1,故原题说法正确;
B、甲的众数为0和2,乙的众数为1,故原题说法不正确;
C、甲的中位数为1,乙的中位数为1,故原题说法正确;
D、甲的方差为 ,乙的方差为 ,甲的方差大于乙的方差,故原题说法正确;
故选B.
本题考查众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.
5、D
【解析】
根据标准差的定义求解即可
【详解】
因为这组数据的方差是3,所以这组数据的标准差是.
故答案为:D
本题考查标准差的计算,标准差是方差的算术平方根.
6、D
【解析】
根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
【详解】
∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故选D.
本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2﹣4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.
7、A
【解析】
根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.
【详解】
解:∵四边形ABCD是菱形,设AB,CD交于O点,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=×AC×BD=AB×DH,
∴×8×6=5×DH,
∴DH=,
故选A.
本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=×AC×BD=AB×DH是解此题的关键.
8、C
【解析】
根据实数的性质即可求解.
【详解】
=
故选C.
此题主要考查实数的化简,解题的关键是熟知实数的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、a+b
【解析】
将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
【详解】
解:原式=
=
=
=a+b
此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
10、
【解析】
用树状图将所有的情况数表示出来,然后找到恰好排列成“绿色闵行垃圾分类要先行”的情况数,利用所求情况数与总数之比求概率即可.
【详解】
由树状图可知,总共有6种情况,其中恰好排列成“绿色闵行垃圾分类要先行”的情况只有1种,所以恰好排列成“绿色闵行垃圾分类要先行”的概率为 .
故答案为: .
本题主要考查用树状图求随机事件的概率,掌握树状图的画法及概率公式是解题的关键.
11、-1<x<1.
【解析】
先将点P(n,﹣4)代入y=﹣x﹣1,求出n的值,再找出直线y=1x+m落在y=﹣x﹣1的下方且都在x轴下方的部分对应的自变量的取值范围即可.
【详解】
解:∵一次函数y=﹣x﹣1的图象过点P(n,﹣4),
∴﹣4=﹣n﹣1,解得n=1,
∴P(1,﹣4),
又∵y=﹣x﹣1与x轴的交点是(﹣1,0),
∴关于x的不等式1x+m<﹣x﹣1<0的解集为﹣1<x<1.
故答案为﹣1<x<1.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.
12、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
13、1
【解析】
众数是出现次数最多的数,据此求解即可.
【详解】
解:数据1出现了3次,最多,
所以众数为1,
故答案为:1.
此题考查了众数的知识.众数是这组数据中出现次数最多的数.
三、解答题(本大题共5个小题,共48分)
14、(1)如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;(2)证明见解析.
【解析】
(1)直接得出它的逆命题;
(2)先判断出∠A=∠ACD,∠B=∠DCB,最后用三角形的内角和定理,即可求出∠A+∠B=90°,即可得出结论.
【详解】
解:(1)∵“直角三角形斜边上的中线等于斜边的一半”,
∴它逆命题是:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形,
故答案为:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形;
(2)∵CD是△ABC的中线
∴AD=BD=AB,
∵CD=AB,
∴AD=CD=BD
∴∠A=∠ACD,∠B=∠DCB,
在△ABC中,∠A+∠B+∠ACD+∠DCB=180°
∴∠A+∠B+∠A+∠B=180°,
∴∠A+∠B=90°,
∴∠ACB=∠ACD+∠DCB=90°,
∴△ABC为直角三角形.
主要考查了直角三角形的性质,等腰三角形的性质,根据命题得出逆命题是解本题的关键.
15、(1)18;(2)见解析
【解析】
(1)过点A作AH⊥BC于H,由AC=BC,∠ABC=75°,得出∠ACB=30°,则AH=AC=BC=3,S平行四边形ABCD=2S△ABC=2×BC•AH,即可得出结果;
(2)过点A作AN∥CE,交BG于N,则∠ECA=∠CAN,由E是AB中点得出EF是△ABN的中位线,则EF=AN,证明∠GBC=∠ECA,∠GBC=∠G,∠ACB=∠CAG得出∠ECB=∠ECA=∠CAN=∠GAN,推出∠GAN=∠G,则AN=GN,由平行线的性质得出==1,得出BF=FN,即可得出结论.
【详解】
(1)解:作,垂足为,则
∵,
∴ ,
∴,
∴;
(2)过点A作AN∥CE,交BG于N,如图2所示:
则∠ECA=∠CAN,
∵E是AB中点,
∴EF是△ABN的中位线,
∴EF=AN,
∵AC=BC,E是AB中点,
∴∠ECB=∠ECA,
∵∠GBC=∠ECB,
∴∠GBC=∠ECA,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠GBC=∠G,∠ACB=∠CAG,
∴∠ECB=∠ECA=∠CAN=∠GAN,
∴∠GAN=∠G,
∴AN=GN,
∵EF∥AN,
,
∴BF=FN,
∴GF=GN+FN=AN+BF,
∴GF=BF+2EF.
考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质、全等三角形的判定与性质、三角形中位线的判定与性质、平行四边形与三角形面积的计算等知识,熟练掌握平行四边形的性质、构建三角形中位线、证明等腰三角形是解题的关键.
16、 (1)这两年公民出境旅游总人数的年平均增长率为20%;
(2)约172.8万人次.
【解析】
(1)根据题意可以列出相应的一元二次方程,从而可以解答本题;
(2)根据(1)中的增长率即可解答本题.
【详解】
(1)设这两年该省公民出境旅游人数的年平均增长率为x,
100(1+x)+100(1+x)2=264,
解得,x1=0.2,x2=−3.2 (不合题意,舍去),
答:这两年公民出境旅游总人数的年平均增长率为20%;
(2)如果2019年仍保持相同的年平均增长率,
则2019年该省公民出境旅游人数为:100(1+x)3=100×(1+20%)3=172.8(万人次),
答:预测2019年该省公民出境旅游总人数约172.8万人次.
本题考查一元二次方程的应用,(1)解决此类问题要先找等量关系,2017年出境旅游人数+2018年出境旅游人数=264,可根据2016年的人数,运用增长率公式表示出2017年、2018年的人数,从而列出方程,由此可解;(2)可根据(1)中计算出来的增长率,运用公式直接求解(增长率计算公式:B=A(1+a)n这里A为基数,B为增长之后的数量,a为增长率,n为期数).
17、答案见解析.
【解析】
试题分析:欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.
试题解析:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,∵DE=CF,∠DEB=∠AFC,AF=BE,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.
考点:全等三角形的判定与性质.
18、(1);(2)﹣4<x<0或x>1
【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
【详解】
解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),
∴m=1×(﹣4)=﹣4, ∴y=﹣,
将x=﹣4,y=n代入反比例解析式得:n=1,
∴A(﹣4,1),
∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,
解得:k=-1,b=-3, ∴y=﹣x﹣3;
在直线y=﹣x﹣3中,当y=0时,x=﹣3,
∴C(﹣3,0),即OC=3,
∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;
(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.
本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、向上平移五个单位
【解析】
根据“上加下减”即可得出答案.
【详解】
一次函数的图像是由直线向上平移五个单位得到的,
故答案为:向上平移五个单位.
本题考查一次函数图象的平移,熟记“上加下减,左加右减”的平移规律是解题的关键.
20、
【解析】
反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
【详解】
解:∵同一坐标系下双曲线y与直线ykx一个交点为坐标为3,1,
∴另一交点的坐标是(-3,1).
故答案是:(-3,1).
本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.
21、5.1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000051=5.1×10-1.
故答案为:5.1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22、
【解析】
试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式。因此,
先提取公因式后继续应用平方差公式分解即可:。
23、
【解析】
根据二次函数的解析式,直接即可写出二次函数的的顶点坐标.
【详解】
根据二次函数的解析式可得二次函数的顶点为:(5,8).
故答案为(5,8)
本题主要考查二次函数的顶点坐标的计算,关键在于利用配方法构造完全平方式,注意括号内是减号.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据路程=速度×时间填写即可;
(2)小组甲:根据乘高铁列车从甲地到乙地比乘特快列车少用9h列方程求解,然后检验;小组乙:根据高铁列车的平均行驶速度是特快列车的2.8倍列方程求解,然后检验;
【详解】
(1)
(2)利用乘高铁列车从甲地到乙地比乘特快列车少用9h,高铁列车的平均行驶速度是特快列车的2.8 倍得出等量关系
第一种:
,解得:x=100,
经检验x=100 是原方程的解,
2.8x=280,
答:特快列车的平均行驶速度为100km/h,特高列车的平均行驶速度为280km/h;
第二种:,
解得:y=5 经检验y=5 是原方程的解,
y+9=14,
答: 乘高铁列车从甲到乙5 小时,乘特快列车14 小时.
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
25、(1)见解析;(2)∠ABC=45°.
【解析】
(1)根据勾股定理作出边长为的正方形即可得;
(2)连接AC,根据勾股定理逆定理可得△ABC是以AC、BC为腰的等腰直角三角形,据此可得答案.
【详解】
(1)如图1所示:
(2)如图2,连AC,则
∵,即BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴∠ABC=∠CAB=45°.
本题考查了作图﹣基本作图,解题的关键是掌握勾股定理及其逆定理和正方形的判定和性质.
26、 (1)①②③;(2);(3),x=-3
【解析】
(1)根据快乐分式的定义分析即可;
(2)根据快乐分式的定义变形即可;
(3)先化简,再根据快乐分式的定义变形,然后再根据x的值和分式的值为整数讨论即可.
【详解】
解:(1)①,是快乐分式 ,
② ,是快乐分式,
③ ,是快乐分式,
④ 不是分式,故不是快乐分式.
故答案为:①②③ ;
(2) 原式= = ;
(3)原式=
= =
= =
∵当或 时,分式的值为整数,
∴x的值可以是0或或1或,
又∵分式有意义时,x的值不能为0、1、,
∴
本题考查了新定义运算,以及分式的混合运算.熟练掌握运算法则及快乐分式的定义是解本题的关键.
题号
一
二
三
四
五
总分
得分
甲
0
1
2
0
2
乙
2
1
0
1
1
相关试卷
这是一份2024年山东省济南市礼乐初级中学数学九上开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年山东省济南市汇才学校九年级数学第一学期开学考试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年山东省济南市历下区数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。