2024年山东省济宁市曲阜师大附属实验学校数学九年级第一学期开学达标检测试题【含答案】
展开
这是一份2024年山东省济宁市曲阜师大附属实验学校数学九年级第一学期开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形的面积为28,对角线交于点;以、为邻边作平行四边形,对角线交于点;以、为邻边作平行四边形;…依此类推,则平行四边形的面积为( )
A.B.C.D.
2、(4分)如图所示,在中,分别是的中点,分别交于点.下列命题中不正确的是( )
A.B.
C.D.
3、(4分)使有意义的取值范围是( )
A.B.C.D.
4、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
A.4cm2B.5cm2C.20cm2D.30cm2
5、(4分)下列植物叶子的图案中既是轴对称,又是中心对称图形的是( )
A.B.C..D.
6、(4分)下列图形中,对称轴的条数最少的图形是
A.B.C.D.
7、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=( )
A.28°B.38°C.52°D.62°
8、(4分)如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为
A.12B.14C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)方程的根为________.
10、(4分)化简b 0 _______.
11、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
12、(4分)如果一个多边形的每一个外角都等于60°,则它的内角和是__________.
13、(4分)如图,小明在“4x5”的长方形内丢一粒花生(将花生看作一个点),则花生落在阴影的部分的概率是_________
三、解答题(本大题共5个小题,共48分)
14、(12分)为了解某中学学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:
根据以上提供的信息,解答下列问题:
(1)x ,a ,b ;
(2)补全上面的条形统计图;
(3)若该校共有学生5000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.
15、(8分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.
(1)求这个一次函数的解析式;
(2)求此函数与x轴,y轴围成的三角形的面积.
16、(8分)把下列各式因式分解:
(1)a3﹣4a2+4a
(2)a2(x﹣y)+b2(y﹣x)
17、(10分)为了满足市场需求,某厂家生产A、B两种款式的环保购物袋,每天共生产5000个,两种购物袋的成本和售价如下表:
设每天生产A种购物袋x个,每天共获利y元.
(1)求y与x的函数解析式;
(2)如果该厂每天最多投入成本12000元,那么每天最多获利多少元?
18、(10分)先化简,然后a在﹣1、1、2三个数中任选一个合适的数代入求值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在中,,,,过点作,垂足为,则的长度是______.
20、(4分)如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.
21、(4分)如图,a∥b,∠1=110°,∠3=50°,则∠2的度数是_____.
22、(4分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连接AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=,其中正确的结论有__________.
23、(4分)若b为常数,且﹣bx+1是完全平方式,那么b=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图一次函数y=kx+b的图象经过点A和点B.
(1)写出点A和点B的坐标并求出k、b的值;
(2)求出当x=时的函数值.
25、(10分)已知:是一元二次方程的两实数根.
(1)求 的值;
(2)求 x1 x2的值.
26、(12分)如图,矩形的两条边、分别在轴和轴上,已知点 坐标为(4,–3).把矩形沿直线折叠,使点落在点处,直线与、、的交点分别为、、.
(1)线段 ;
(2)求点坐标及折痕的长;
(3)若点在轴上,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,则请求出点的坐标;若不存在,请说明理由;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
设矩形ABCD的面积为S,则平行四边形AOC1B的面积=矩形ABCD的面积=S,平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…,平行四边形AOn-1CnB的面积= ,平行四边形AOnCn+1B的面积=,即可得出结果.
【详解】
解:设矩形ABCD的面积为S
根据题意得:平行四边形AOC1B的面积=矩形ABCD的面积=S
平行四边形AO1C2B的面积=平行四边形AOC1B的面积=,…
平行四边形AOn-1CnB的面积=
∴平行四边形AOnCn+1B的面积=
∴平行四边形的面积=
故选C.
本题考查了矩形的性质、平行四边形的性质、规律推论等知识,熟练掌握矩形的性质和平行四边形的性质,得出平行四边形AOnCn+1B的面积=是解题的关键.
2、A
【解析】
证出四边形AMCN是平行四边形,由平行四边形的性质得出选项B正确,由相似三角形的性质得出选项C正确,由平行四边形的面积公式得出选项D正确,即可得出结论.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠BAD=∠BCD,
∵M、N分别是边AB、CD的中点,
∴CN=CD,AM=AB,
∴CN=AM,
∴四边形AMCN是平行四边形,
∴AN∥CM,∠MAN=∠NCM,
∴∠DAN=∠BCM,选项B正确;
∴△BMQ∽△BAP,△DPN∽△DQC,
∴BQ:BP=BM:AB=1:2,DP:DQ=DN:CD=1:2,
∴DP=PQ,BQ=PQ,
∴DP=PQ=QB,
∴BP=DQ,选项C正确;
∵AB=2AM,
∴S▱AMCN:S▱ABCD=1:2,选项D正确;
故选A.
此题考查了平行四边形的判定与性质、相似三角形的判定与性质等知识.此题难度适中,注意掌握数形结合思想的应用.
3、C
【解析】
根据二次根式的非负性可得,解得:
【详解】
解:∵使有意义,
∴
解得
故选C
本题考查二次根式有意义的条件,熟练掌握二次根式的非负性为解题关键
4、C
【解析】
过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
【详解】
过D作直线EF与l2垂直,交l1与点E,交l4于点F.
,即
四边形ABCD为正方形
在和中
即正方形的面积为20
故选C.
本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
5、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A. 是轴对称图形,不是中心对称图形。故选项错误;
B. 是轴对称图形,不是中心对称图形。故选项错误;
C. 不是轴对称图形,也不是中心对称图形。故选项错误;
D. 是轴对称图形,也是中心对称图形。故选项正确。
故选D.
此题考查中心对称图形,轴对称图形,解题关键在于掌握其概念
6、B
【解析】
把各个图形抽象成基本的几何图形,再分别找出它们的对称轴,圆有无数条对称轴,正方形有4条对称轴,等边三角形有三条对称轴;找出各个图形中所有的对称轴,再比较即可找出对称轴最少的图形.
【详解】
选项A、C、D中各有4条对称轴,选项B中只有1条对称轴,所以对称轴条数最少的图形是B.
故选:B.
本题主要考查的是轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
7、D
【解析】
由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.
【详解】
解:∵CE⊥AB,
∴∠CEB=90°,
∵∠BCE=28°,
∴∠B=62°,
∵四边形ABCD是平行四边形,
∴∠D=∠B=62°,
故选:D.
本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.
8、B
【解析】
设点,则点,,然后根据的长列出方程,求得的值,得到的坐标,解直角三角形求得,就可以求得的周长。
【详解】
解:设点,则点,,
,
四边形是平行四边形,
,
,解得,
,
作于,则,
,
,
的周长,
故选:.
本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,用点,的横坐标之差表示出的长度是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
运用因式分解法可解得.
【详解】
由得
故答案为:
考核知识点:因式分解法解一元二次方程.
10、
【解析】
式子的分子和分母都乘以 即可得出 ,根据b是负数去掉绝对值符号即可.
【详解】
∵b
相关试卷
这是一份山东省济宁市曲阜师范大附属实验学校2023-2024学年九上数学期末检测模拟试题含答案,共8页。试卷主要包含了分式方程的根是等内容,欢迎下载使用。
这是一份山东省济宁市曲阜师大附属实验学校2023-2024学年九上数学期末调研模拟试题含答案,共8页。
这是一份山东省济宁市曲阜师范大附属实验学校2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案,共6页。试卷主要包含了计算,得,如图,≌,下列结论正确的是,下列各数中,不是无理数的是,若分式有意义,则a的取值范围是,下列图标中,不是轴对称图形的是等内容,欢迎下载使用。