终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】

    立即下载
    加入资料篮
    2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】第1页
    2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】第2页
    2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】

    展开

    这是一份2024年山东省莱芜莱城区五校联考数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )
    A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
    2、(4分)在▱ABCD中,∠C=32°,则∠A的度数为( )
    A.148°B.128°C.138°D.32°
    3、(4分)下列角度不可能是多边形内角和的是( )
    A.180°B.270°C.360°D.900°
    4、(4分)在中,,于,平分交于,则下列结论一定成立的是( )
    A. B. C. D.
    5、(4分)如图,小“鱼”与大“鱼”是位似图形,如果小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为( ).
    A.(-a,-2b)B.(-2a,-b)C.(-2a,-2b)D.(-2b,-2a)
    6、(4分)如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为( )
    A.锐角三角形B.钝角三角形
    C.直角三角形D.等边三角形
    7、(4分)下列计算正确的是( )
    A.3﹣2=1B.(1﹣)(1+)=﹣1
    C.(2﹣)(3+)=4D.(+)2=5
    8、(4分)顺次连接矩形四边中点得到的四边形一定是( )
    A.梯形B.正方形C.矩形D.菱形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)现有两根长6分米和3分米的木条,小华想再找一根木条为老师制作一个直角三角形教具,则第三根木条的长度应该为___分米.
    10、(4分)如果直线l与直线y=﹣2x+1平行,与直线y=﹣x+2的交点纵坐标为1,那么直线l的函数解析式为__.
    11、(4分)如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____.
    12、(4分)如图,在▱ABCD中,E为CD的中点,连接AE并延长,交BC的延长线于点G,BF⊥AE,垂足为F,若AD=AE=1,∠DAE=30°,则EF=_____.
    13、(4分) “I am a gd student.”这句话的所有字母中,字母“a”出现的频率是______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.
    提出问题:当点运动时,的度数是否发生改变?
    探究问题:
    (1)首先考察点的两个特殊位置:
    ①当点与点重合时,如图1所示,____________
    ②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)
    (2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)
    (3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.
    15、(8分)如图,矩形OABC的顶点与坐标原点O重合,将△OAB沿对角线OB所在的直线翻折,点A落在点D处,OD与BC相交于点E,已知OA=8,AB=4
    (1)求证:△OBE是等腰三角形;
    (2)求E点的坐标;
    (3)坐标平面内是否存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.
    16、(8分)先化简,再选择一恰当的a的值代入求值.
    17、(10分)我们定义:如果两个三角形的两组对应边相等,且它们的夹角互补,我们就把其中一个三角形叫做另一个三角形的“夹补三角形”,同时把第三边的中线叫做“夹补中线.例如:图1中,△ABC与△ADE的对应边AB=AD,AC=AE,∠BAC+∠DAE=180°,AF是DE边的中线,则△ADE就是△ABC的“夹补三角形”,AF叫做△ABC的“夹补中线”.
    特例感知:
    (1)如图2、图3中,△ABC与△ADE是一对“夹补三角形”,AF是△ABC的“夹补中线”;
    ①当△ABC是一个等边三角形时,AF与BC的数量关系是: ;
    ②如图3当△ABC是直角三角形时,∠BAC=90°,BC=a时,则AF的长是 ;
    猜想论证:
    (2)在图1中,当△ABC为任意三角形时,猜想AF与BC的关系,并给予证明.
    拓展应用:
    (3)如图4,在四边形ABCD中,∠DCB=90°,∠ADC=150°,BC=2AD=6,CD=,若△PAD是等边三角形,求证:△PCD是△PBA的“夹补三角形”,并求出它们的“夹补中线”的长.
    18、(10分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:
    (1)观察与猜想y与x的函数关系,并说明理由.
    (2)求日销售价定为30元时每日的销售利润.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.
    20、(4分)将函数的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是____.
    21、(4分)有一组数据如下: 2, 2, 0,1, 1.那么这组数据的平均数为__________,方差为__________.
    22、(4分)计算__.
    23、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (1)参加比赛有_____名运动员,图①中a的值是_____,补全条形统计图.
    (2)统计的这组初赛成绩数据的众数是_____,中位数是_____,平均数是_____.
    (3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
    25、(10分)把一个足球垂直水平地面向上踢,时间为(秒)时该足球距离地面的高度(米)适用公式
    经过多少秒后足球回到地面?
    经过多少秒时足球距离地面的高度为米?
    26、(12分)码头工人每天往一艘轮船上装载货物,平均每天装载速度y(吨/元)与装完货物所需时间x(天)之间是反比例函数关系,其图象如图所示.
    (1)求这个反比例函数的表达式;
    (2)由于紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸货多少吨?
    (3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.
    【详解】
    如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,
    ∴AC2+BC2=AB2,
    ∴△ABC是直角三角形,且∠ACB=90°,
    故选B.
    本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    2、D
    【解析】
    根据平行四边形的性质:对角相等即可求出的度数.
    【详解】
    四边形是平行四边形,


    .
    故选:.
    本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等.
    3、B
    【解析】
    根据多边形的内角和公式即可求解.
    【详解】
    解:A、180°÷180°=1,是180°的倍数,故可能是多边形的内角和;
    B、270°÷180°=1…90°,不是180°的倍数,故不可能是多边形的内角和;
    C、360°÷180°=2,是180°的倍数,故可能是多边形的内角和;
    D、900÷180=5,是180°的倍数,故可能是多边形的内角和.
    故选:B.
    此题主要考查多边形的内角,解题的关键是熟知多边形的内角和公式.
    4、C
    【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.
    详解:∵∠ACB=90°,CD⊥AB,
    ∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
    ∴∠BCD=∠A.
    ∵CE平分∠ACD,
    ∴∠ACE=∠DCE.
    又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,
    ∴∠BEC=∠BCE,
    ∴BC=BE.
    故选C.
    点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.
    5、C
    【解析】
    根据位似图形的性质结合图形写出对应坐标即可.
    【详解】
    ∵小“鱼”与大“鱼”的位似比是
    ∴大“鱼”上对应“顶点”的坐标为(-2a,-2b)
    故答案为:C.
    本题考查了位似图形的问题,掌握位似图形的性质是解题的关键.
    6、C
    【解析】
    先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.
    【详解】
    解:∵(a+b)(a-b)=36,
    ∴,
    ∴,
    ∴三角形是直角三角形,
    故选C.
    本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.
    7、B
    【解析】
    根据二次根式的混合运算顺序和运算法则逐一计算可得.
    【详解】
    A、此选项错误;
    B、此选项正确;
    C、 此选项错误;
    D、,此选项错误;
    故选:B.
    本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
    8、D
    【解析】
    根据顺次连接矩形的中点,连接矩形的对边上的中点,可得新四边形的对角线是互相垂直的,并且是平行四边形,所以可得新四边形的形状.
    【详解】
    根据矩形的中点连接起来首先可得四边是相等的,因此可得四边形为菱形,故选D.
    本题主要考查对角线互相垂直的判定定理,如果四边形的对角线互相垂直,则此四边形为菱形.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、或3
    【解析】
    根据勾股定理解答即可.
    【详解】
    解:第三根木条的长度应该为或分米;
    故答案为或3..
    此题考查勾股定理,关键是根据勾股定理解答.
    10、答案为:y=﹣2x+3.
    【解析】【分析】设直线l的函数解析式为y=kx+b,先由平行关系求k,再根据交点求出b.
    【详解】设直线l的函数解析式为y=kx+b,
    因为,直线l与直线y=﹣2x+1平行,
    所以,y=﹣2x+b,
    因为,与直线y=﹣x+2的交点纵坐标为1,
    所以,1=﹣x+2,x=1
    所以,把(1,1)代入y=-2x+b,解得b=3.
    所以,直线l的函数解析式为:y=﹣2x+3.
    故答案为:y=﹣2x+3.
    【点睛】本题考核知识点:一次函数解析式. 解题关键点:熟记一次函数的性质.
    11、x<1
    【解析】
    观察函数图象得到当x<1时,函数y=kx+6的图象都在y=x+b的图象上方,所以关于x的不等式kx+6>x+b的解集为x<1.
    【详解】
    由图象可知,当x<1时,有kx+6>x+b,
    当x>1时,有kx+6<x+b,
    所以,填x<1
    本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    12、﹣1
    【解析】
    首先证明△ADE≌△GCE,推出EG=AE=AD=CG=1,再求出FG即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BG,AD=BC,
    ∴∠DAE=∠G=30°,
    ∵DE=EC,∠AED=∠GEC,
    ∴△ADE≌△GCE,
    ∴AE=EG=AD=CG=1,
    在Rt△BFG中,∵FG=BG•cs30°=,
    ∴EF=FG-EG=-1,
    故答案为-1.
    本题考查平行四边形的性质、全等三角形的判定和性质、锐角三角函数等知识,解题的关键是熟练掌握基本知识.
    13、
    【解析】
    根据题意可知15个字母里a出现了2次,所以字母“a”出现的频率是.故答案为.
    三、解答题(本大题共5个小题,共48分)
    14、(1)①45;②不变化;(2)成立;(3)详见解析.
    【解析】
    (1)①②根据正方形的性质、线段的垂直平分线的性质即可判断;
    (2)画出图形即可判断,结论仍然成立;
    (3)如图2-1中或2-2中,作作EF⊥BC,EG⊥AB,证 得∠AEG=∠PEF.由∠ABC=∠EFB=∠EGB=90°知∠GEF=∠GEP+∠PEF=90°.继而得∠AEP=∠AEG+∠GEP=∠PEF+∠GEP=90°.从而得出∠APE=∠EAP=45°.
    【详解】
    解(1)①当点P与点B重合时,如图1-1所示:
    ∵四边形ABCD是正方形,
    ∴∠APE=45°
    ②当BP=BC时,如图1-2所示,①中的结论不发生变化;
    故答案为:45°,不变化.
    (2) (2)如图2-1,如图2-2中,结论仍然成立;
    故答案为:成立;
    (3)证明一:如图所示.
    过点作于点,于点.
    ∵点在的垂直平分线上,
    ∴.
    ∵四边形为正方形,
    ∴平分.
    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    证明二:如图所示.
    过点作于点,延长交于点,连接.
    ∵点在的垂直平分线上,
    ∴.
    ∵四边形为正方形,
    ∴,
    ∴.
    ∴,.
    ∴.
    又∵,
    ∴.
    又∵,
    ∴.
    ∴.
    本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形的判定与性质、中垂线的性质等知识点
    15、(1)见解析; (2)(3,4); (3)(,)或(,)或(,).
    【解析】
    (1)由矩形的性质得出OA∥BC,∠AOB=∠OBC,
    由折叠的性质得∠AOB=∠DOB,得出∠OBC=∠DOB,证出OE=BE即可;
    (2)设OE=BE=x,则CE=8-x,在Rt△OCE中,由勾股定理得出方程,解方程即可;
    (3)先求出点D的坐标,然后根据B、D、E三点的坐标利用中点坐标公式分三种情况,即可求出P点的坐标.[点(a,b)与(c,d)所连线段的中点坐标是(,)]
    【详解】
    解:
    (1)证明:∵四边形OABC是矩形,
    ∴OA∥BC,
    ∴∠AOB=∠OBC,
    由折叠的性质得:∠AOB=∠DOB,
    ∴∠OBC=∠DOB,
    ∴OE=BE,
    ∴△OBE是等腰三角形;
    (2)设OE=BE=x,则CE=BC-BE=OA-BE=8-x,
    在Rt△OCE中,由勾股定理得:42+(8-x)2=x2,
    解得:x=5,
    ∴CE=8-x=3,
    ∵OC=4,
    ∴E点的坐标为(3,4);
    (3)坐标平面内存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形.理由如下:
    作DH⊥BE于H
    在Rt△BDE中,BE=5,BD=4,DE=3

    ∴DH=
    ∴EH=
    ∴CH=
    ∴点D的坐标是(,)
    ∴当BE为平行四边形的对角线时,点P的坐标为(3+8-,4+4-),即(,);
    当BD为平行四边形的对角线时,点P的坐标为(8+-3,4+-4),即(,);
    当DE为平行四边形的对角线时,点P的坐标为(3+-8,4+-4),即(,);
    综上所述,坐标平面内存在一点P,使得以B,D,E,P为顶点的四边形是平行四边形,P点坐标为(,)或(,)或(,).
    本题是四边形综合题目,考查了矩形的性质、翻折变换的性质、坐标与图形性质、勾股定理、平行四边形的性质、中点坐标公式等知识,本题综合性强,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.
    16、均可
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:原式=(+)•
    =•
    =
    ∵,
    ∴a≠±1,
    ∴把a=1代入得:原式=1.
    点睛:本题考查了分式的运算,解题的关键是运用分式的运算法则,本题属于基础题型.
    17、(1)AF=BC;a;(2)猜想:AF=BC,(3)
    【解析】
    (1)①先判断出AD=AE=AB=AC,∠DAE=120°,进而判断出∠ADE=30°,再利用含30度角的直角三角形的性质即可得出结论;
    ②先判断出△ABC≌△ADE,利用直角三角形的性质即可得出结论;
    (2)先判断出△AEG≌△ACB,得出EG=BC,再判断出DF=EF,即可得出结论;
    (3)先判断出四边形PHCD是矩形,进而判断出∠DPC=30°,再判断出PB=PC,进而求出∠APB=150°,即可利用“夹补三角形”即可得出结论.
    【详解】
    解:(1)
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ①∵△ABC是等边三角形,
    ∴AB=AC=BC,∠BAC=60°
    ∴AD=AE=AB=AC,∠DAE=120°,
    ∴∠ADE=30°,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF⊥DE,
    在Rt△ADF中,AF=AD=AB=BC,
    故答案为:AF=BC;
    ②当△ABC是直角三角形时,∠BAC=90°,
    ∵∠DAE=90°=∠BAC,
    易证,△ABC≌△ADE,
    ∴DE=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=DE=BC=a,
    故答案为a;
    (2)解:猜想:AF=BC,
    理由:如图1,延长DA到G,使AG=AD,连EG
    ∵△ABC与△ADE是一对“夹补三角形”,
    ∴AB=AD,AC=AE,∠BAC+∠DAE=180°,
    ∴AG=AB,∠EAG=∠BAC,AE=AC,
    ∴△AEG≌△ACB,
    ∴EG=BC,
    ∵AF是“夹补中线”,
    ∴DF=EF,
    ∴AF=EG,
    ∴AF=BC;
    (3)证明:如图4,
    ∵△PAD是等边三角形,
    ∴DP=AD=3,∠ADP=∠APD=60°,
    ∵∠ADC=150°,
    ∴∠PDC=90°,
    作PH⊥BC于H,
    ∵∠BCD=90°
    ∴四边形PHCD是矩形,
    ∴CH=PD=3,
    ∴BH=6﹣3=3=CH,
    ∴PC=PB,
    在Rt△PCD中,tan∠DPC=,
    ∴∠DPC=30°
    ∴∠CPH=∠BPH=60°,∠APB=360°﹣∠APD﹣∠DPC﹣∠BPC=150°,
    ∴∠APB+∠CPD=180°,
    ∵DP=AP,PC=PB,
    ∴△PCD是△PBA的“夹补三角形”,
    由(2)知,CD=,
    ∴△PAB的“夹补中线”=.
    此题是四边形综合题,主要考查了全等三角形的判定和性质,含30度角的直角三角形的性质,锐角三角函数,新定义的理解和掌握,理解新定义是解本题的关键.
    18、(1)y=-x+40;理由见解析;(2)200元.
    【解析】
    (1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;
    (2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.
    【详解】
    解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b,
    则有,
    解得:,
    ∴y与x的函数关系式是y=-x+40;
    (2)当x=30时,y=-30+40=10,
    每日的销售利润=(30-10)×10=200元.
    本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、四
    【解析】
    根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.
    【详解】
    解:∵一元二次方程的两个实数根分别是a、b,
    ∴a+b=1,ab=4,
    ∴一次函数的解析式为y=4x+1.
    ∵4>0,1>0,
    ∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,
    故答案为:四.
    本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.
    20、y=-4x-1
    【解析】
    根据函数图象的平移规律:上加下减,可得答案.
    【详解】
    解:将函数y=-4x的图象沿y轴向下平移1个单位,则平移后所得图象的解析式是y=-4x-1.
    故答案为:y=-4x-1.
    本题考查了一次函数图象与几何变换,利用一次函数图象的平移规律是解题关键.
    21、1 1
    【解析】
    分析:先算出数据的平均数,再根据方差的计算公式,代入公式计算即可得到结果.
    详解:平均数为:(-2+2+0+1+1)÷5=1,
    =,
    故答案为1, 1.
    点睛:本题考查了平均数与方差的应用,先求出这组数据的平均数,再根据方差公式进行计算即可.
    22、
    【解析】
    通过原式约分即可得到结果.
    【详解】
    解:原式=,
    故答案为:.
    此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.
    23、1
    【解析】
    利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.
    【详解】
    由作法得MN垂直平分BC,
    ∴DB=DC,
    ∴∠B=∠BCD,
    ∵∠B+∠A=90°,∠BCD+∠ACD=90°,
    ∴∠ACD=∠A,
    ∴DA=DC,
    ∴CD=AB=×4=1.
    故答案为1.
    本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)20,25,图详见解析;(2)众数:1.65m,中位数1.60m,平均数1.61m;(3)能.
    【解析】
    (1) 用整体1减去其他百分比,即可求出a的值,用已知人数除以所占百分比即可求解.
    (2) 根据平均数,众数和中位数的定义分别进行求解.
    (3) 根据中位数的意义可直接判断出能否进入复赛.
    【详解】
    (1),
    (2)平均数;在这组数据样本中,1.65出现了6次,出现次数最多,故众数为1.65;将这组样本数据从小到大的顺序排列,其中处于中间的两个数都为1.60,所以中位数为.
    (3)能.
    本题主要考查数据的处理、数据的分析以及统计图表,熟悉掌握是关键.
    25、(1)秒后足球回到地面;(2)经过秒或秒足球距地面的高度为米.
    【解析】
    (1)令,解方程即可得出答案;
    (2)令,解方程即可.
    【详解】
    解:令,
    解得:(舍),,
    ∴秒后足球回到地面;
    令,
    解得:.
    即经过秒或秒,足球距地面的高度为米.
    本题考查的知识点是二次函数的实际应用,根据题意分别令为不同的值解答本题.
    26、(1);(2) 80吨货物;(3)6名.
    【解析】
    (1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;
    (2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;
    (3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.
    【详解】
    解:(1)设y与x之间的函数表达式为y=,
    根据题意得:50=,
    解得k=400,
    ∴y与x之间的函数表达式为y=;
    (2)∵x=5,
    ∴y=400÷5=80,
    解得:y=80;
    答:平均每天至少要卸80吨货物;
    (3)∵每人一天可卸货:50÷10=5(吨),
    ∴80÷5=16(人),16﹣10=6(人).
    答:码头至少需要再增加6名工人才能按时完成任务.
    本题考查了反比例函数的应用,解题的关键是熟练的掌握反比例函数的性质.
    题号





    总分
    得分
    X(元)
    15
    20
    25

    Y(件)
    25
    20
    15

    相关试卷

    2024-2025学年湖北省鄂州鄂城区七校联考九上数学开学学业水平测试试题【含答案】:

    这是一份2024-2025学年湖北省鄂州鄂城区七校联考九上数学开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】:

    这是一份2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省莱芜市莱城区腰关中学2023-2024学年九上数学期末质量检测试题含答案:

    这是一份山东省莱芜市莱城区腰关中学2023-2024学年九上数学期末质量检测试题含答案,共8页。试卷主要包含了已知二次函数y=x2﹣6x+m等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map